Данный файл представлен исключительно в ознакомительных целях.

Уважаемый читатель!
Если вы скопируете данный файл,
Вы должны незамедлительно удалить его сразу после ознакомления с содержанием.
Копируя и сохраняя его Вы принимаете на себя всю ответственность, согласно действующему международному законодательству.
Все авторские права на данный файл сохраняются за правообладателем.
Любое коммерческое и иное использование кроме предварительного ознакомления запрещено.

Публикация данного документа не преследует никакой коммерческой выгоды. Но такие документы способствуют быстрейшему профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов.

Шейко А. М., Ивашечкин В. В., Гуринович А. Д., Галицкий В. А

ПРОГНОЗ КОЛЬМАТАЖА СКВАЖИН И ОПРЕДЕЛЕНИЕ РАЦИОНАЛЬНЫХ СРОКОВ ИХ РЕГЕНЕРАЦИИ

Введение. Многолетний опыт эксплуатации водозаборных скважин показывает, что их дебит существенно уменьшается во времени в связи с развитием кольматажа фильтров и прифильтровых зон. Поэтому необходимо прогнозировать интенсивность этого процесса, чтобы планировать профилактические меры по восстановлению производительности водозаборов или перебуриванию скважин [1, 2, 3, 4].

Результаты исследования строения призабойных зон и фильтров скважин, находящихся в эксплуатации, а также характеристика основных физико—химических процессов, определяющих течение и интенсивность химического кольматажа, позволяют заключить, что в общем случае процесс оказывается зависящим от многочисленных факторов: химического состава подземных вод, химического и гранулометрического состава водовмещающих пород (гравийных обсыпок), наличия железобактерий и водорослей, конструкции водоприемной части скважины, ее производительности, коагуляции коллоидных растворов и различных видов сорбции, растворенных в воде солей, типа водоподъемного оборудования, режима эксплуатации и др. [1, 5].

Совершенно очевидно, что в природных условиях будет действовать совокупность указанных выше факторов с различной степенью интенсивности. Этим, в частности, объясняется тот факт, что в пределах водозабора в одних геологических и гидрогеологических условиях, при одинаковых конструкциях скважин и фильтров, способах бурения и освоения никогда не получают равнозначных параметров, характеризующих работу рядом стоящих скважин (дебит, понижение уровня, сопротивление фильтра и др.). Такое многообразие факторов не может быть учтено при аналитическом решении задачи об интенсивности процесса химического кольматажа в различных гидрогеологических условиях [1].

Процесс кольматажа фильтров и прифильтровых зон скважин, представляющий собой постепенное и в разной степени интенсивное отложение кольматирующих соединений, характеризуется уменьшением скважности фильтра и пористости пород в прифильтровой зоне, а также коэффициента фильтрации.

Известно, что сопротивление, обусловленное химическим кольматажем, изменяется по закону близкому к экспоненциальному, но с некоторым периодом запаздывания [6]. Для фильтров, имеющих сниженную по сравнению с пластом проницаемость, изменение удельных дебитов подчиняется экспоненциальной зависимости [7, 3]:

$$q_t = q_0 * e^{-\beta t} ,$$

где q_t - текущий удельный дебит; q_0 - начальный удельный дебит скважины; β - коэффициент, учитывающий изменения удельного дебита скважины в связи с кольматажем (коэффициент «старения» скважины); t - время.

Исследование закономерностей снижения удельного дебита. С целью определения закономерностей снижения удельного дебита во времени были обработаны материалы наблюдений за работой скважин 11-ти водозаборов г. Минска, оборудованных трубчатыми с проволочной обмоткой и каркасно-стержневыми фильтрами. Скважины каптируют воду из двух водоносных горизонтов: днепровско-сожского (f, $lg\ lld$ -sz) и верхнепротерозойского ($V\ vd$), имеют различные сроки эксплуатации до восстановительных обработок и начальные удельные дебиты. Данные изменения удельного дебита скважин аппроксимировались экспоненциальной функцией. После этого определялся рациональный межремонтный период, который соответствовал времени снижения удельного дебита на 25% в сравнении с

первоначальным удельным дебитом. В качестве критерия сравнения интенсивности изменения сопротивлений фильтров и прифильтровых зон скважин рассматривался коэффициент старения β, определяемый по экспериментальной кривой.

Результаты изучения интенсивности падения удельного дебита для скважин, пробуренных ударно-канатным способом (станки УКС - 22м и УКС - 30м) и роторным способом станками УРБ -3AM, 1БА- 15В (прямая промывка) и ФА - 12 (обратная промывка) представлены в таблице 1.

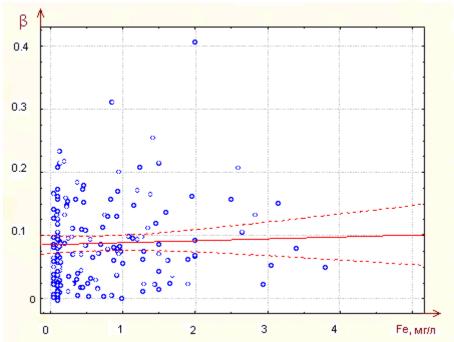
Из данных таблицы 1 следует, что минимальные значения β равные (0,018-0,026) и соответственно максимальные значения рациональных сроков регенерации (15,4-11,1) лет характерны для скважин верхнепротерозойского водоносного горизонта. Надо отметить, что все скважины этого горизонта пробурены на полускальные трещиноватые породы без применения гравийных обсыпок.

Из скважин днепровско-сожского горизонта, сложенного рыхлыми породами, наименьшую интенсивность «старения» имеют скважины, пробуренные без устройства гравийных обсыпок. Их коэффициенты «старения» β в среднем не превышают значений 0,07 (для скважин, пробуренных роторным способом) и 0,08 (для скважин, пробуренных ударно-канатным способом), в то время как у скважин с гравийными обсыпками значения β на 20-40% больше (табл. 1).

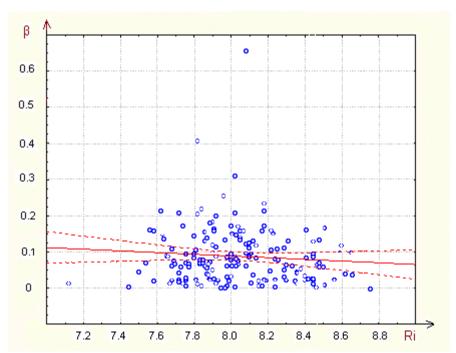
Таблица 1. Значения параметров интенсивности снижения удельных дебитов скважин водозаборов г. Минска

Водо- носный гори- зонт		Верхне- протеро- зойский							
	Ударно-канатный способ бу- рения			Роторный способ бурения					
Тип буровой установки	УКС- 22м, УКС - 30м	УКС- 22м, УКС -30м	УКС- 22м, УКС - 30м	ФА-12 (об- ратная промыв- ка)	УРБ- 3AM	УРБ-ЗАМ 1БА- 15В			
Тип фильтра	Трубча- тый с пров. обмоткой и грав. обсып- кой	Трубча- тый с пров. обмот- кой	Каркасно- стержнев. с грав. обсыпкой	Трубча- тый с пров. об- моткой и грав. об- сыпкой.	Трубчатый с пров. об- моткой	Трубчатый с пров. обмот- кой			
Перво- нач. уд. дебит, м ³ /ч·м	Коэффициент β / рациональный срок регенерации, лет / количество скважин								
0-15	0,102/2,8/ 19	0,05/5,5/1	0,191/1,5/3	0,087/3,3/2	0,046/6,2/7	0,018/15,4/10			
15-25	0,093/3,1/ 22	0,09/3,1/1	0,13/2,2/14	0,106/2,7/1	0,079/3,6/5	0,026/11,1/1			
25-50	0,083/3,5/	0,158/1,9/	0,124/2,3/2	0,138/2,1/2	0,071/4/1	-			
>50	0,159/1,8/	0,089/3,2/	-	0,223/1,3/3	0,157/1,8/1	-			

Средние значения: коэффициента β / рационального срока регенерации, год										
-	0,099/2 ,9	0,077/3,7	0,139/2, 1	0,115/2, 5	0,068/4,2	0,019/14,6				


Одной из причин такого положения может являться то, что в начальный период эксплуатации этих скважин происходит интенсивное уплотнение гравийной обсыпки в прифильтровой зоне, вызванное, как правило, неверным подбором гранулометрического состава самой гравийной смеси, и несоблюдением требуемой продолжительности откачки при освоении скважины [8]. Поэтому удельные дебиты таких скважин имеют тенденцию резко уменьшаться в первые годы эксплуатации. Однако отечественный и зарубежный опыт эксплуатации скважин с гравийно-засыпными фильтрами показывает, что обоснованием для их широкого внедрения является их высокая долговечность и удельные дебиты [9]. Несмотря на быстрое снижение удельного дебита скважин с гравийными обсыпками в начальный период эксплуатации, эти скважины имеют постоянный достаточно большой удельный дебит при дальнейшей их работе в течение многих лет.

Анализ результатов показывает, что практически во всех рассмотренных случаях, прослеживается тенденция роста интенсивности снижения удельного дебита скважин с увеличением абсолютных значений их первоначальных удельных дебитов q₀. Например в скважинах, пробуренных роторным способом с обратной промывкой, имеющих гравийную обсыпку, с ростом q_0 от 2 д 50 м²/ч коэффициент β возрастает от 0,087 до 0,138, а их рациональный срок регенерации уменьшается с 3,3 до 2,1 года. Для исследования этой закономерности была проанализирована работа 209 скважин, оборудованных разными фильтрами и пробуренных в различных гидрогеологических условиях. Расчёты показали, что между первоначальными удельными дебитами и значениями в установилась обратная связь с коэффициентом корреляции г = - 0,51. Это означает, что при увеличении первоначального удельного дебита интенсивность «старения» скважины будет увеличиваться. Одной из причин этого положения является неправильный подбор насосов и высокие эксплуатационные расходы, которые не соответствует проектным дебитам скважин. На практике, если начальный удельный дебит новой скважины превышает $15 \text{ m}^2/\text{ч}$, на нее устанавливают насос производительностью 100-120 м³/ч, несмотря на то, что ее проектный дебит обычно составляет 60 м³/ч. В итоге интенсифицируется механический кольматаж из-за суффозионных процессов и химический кольматаж из-за роста объема отложений, пропорционально количеству воды, прошедшему через фильтр, что следует из теоретических зависимостей, полученных В.С.Алексеевым [1].


Анализ влияния способа бурения на значения коэффициент в при одинаковых конструкциях фильтров показал, что значения в у скважин, пробуренных роторным способом, на 5-20 % выше, чем у скважин, пробуренных ударно-канатным способом. Это объясняется тем, что применение при роторном бурении в качестве промывочной жидкости буровых растворов и даже чистой воды (из-за нахождения в кровле горизонта глинистых пород и наработки бурового раствора) не гарантирует остаточной кольматации в порах грунта на контактных зонах. Поэтому пористость у скважин, пробуренных роторным способом, вследствие кольматажа уменьшается интенсивнее, чем при ударно-канатном способе бурения, где в ствол доливают при сбрасывании желонки чистую воду. Кроме того, в скважинах, пробуренных ударно-канатным методом, обеспечивается более равномерная толщина гравийной засыпки, так как спуск фильтра с направляющими осуществляется не в открытый ствол, а в ствол, обсаженный трубой. Эта труба после засыпки гравия частично или полностью извлекается с ударами или вибрацией, что обеспечивает уплотнение гравийной обсыпки. Однако из-за высокой металлоемкости скважин и сложной технологии бурения, ударно-канатный метод на водозаборах УП «Минскводоканал» в последние годы применяется редко.

В скважинах, пробуренных роторным способом, рыхлая гравийная обсыпка в начальный период эксплуатации скважины интенсивно уплотняется при пусках-остановках погружных насосов, что приводит к резкому снижению пористости в этот период и увеличению коэффициента старения β . Это также является одной из при чин более высоких значений β у скважин, пробуренных роторным способом.

Для выявления зависимости интенсивности кольматации от степени коррозионного воздействия воды (показателя Ризнера) (рис. 1) и содержания железа (рис. 2), были проанализированы 179 скважин. Коэффициенты корреляции в обоих случаях не превышают 0,08, поэтому зависимость считается несущественной. Такое явление связано, повидимому, с проявлением особенности кольматационных процессов на водозаборах г. Минска, обусловленной биологическим кольматажем — накоплением продуктов жизнедеятельности железо- и сульфатредуцирующих бактерий [10, 11]. Таким образом, интенсивность химической кольматации фильтров определяется не только количественным содержанием соединений железа, кальция, магния и др., но их стабильностью при определенных значениях величин рН.

Рис. 1. График зависимости коэффициента «старения» β от содержания железа (Fe)

Рис. 2. График зависимости коэффициента «старения» β от показателя Ризнера (Ri) На рисунке 3 приведены рациональные расчетные межремонтные сроки для скважин водозаборов г. Минска, вычисленные как время уменьшения начальных удельных дебитов на 25%.

Рис. 3. Значения рациональных межремонтных периодов для водозаборов г. Минска Средний межремонтный период для условий естественного старения скважин, при снижении первоначального удельного дебита на 25% в целом по г. Минску составляет 3,35 года (Рис. 3). Проанализированные 203 скважины имели первые восстановительные ремонты в среднем через 14 лет, при среднем понижении удельного дебита на 45%, что должно было негативно сказываться на степени извлечения кольматанта. Эффективность таких ремонтов ниже, чем ожидаемая, так как происходит дегидратация, упрочнение неудаленного вовремя кольматанта, что затрудняет дальнейшую регенерацию фильтра и вынуждает в конечном итоге либо прибегнуть к замене фильтра, либо к перебуриванию скважины. Это свидетельствует о том, что своевременное проведение восстановительных обработок играет важную роль в дальнейшей эксплуатации скважины и продления её срока службы.

Анализируя результаты исследования, можно сделать следующие выводы:

1. Рациональный межремонтный период декольматажа скважин для г. Минска зависит от вида водоносного горизонта, гидрогеологических условий, наличия гравийной

засыпки и ее качества, правильности эксплуатации и мало зависит от абсолютных значений показателя Ризнера и количества растворенного в воде железа.

- 2. Ориентировочный рациональный межремонтный период для водозаборов г. Минска для условий естественного старения скважин при понижении первоначального удельного дебита на 25 % лежит в пределах от 2 до 6,5 года, что в среднем составляет 3,35 года.
- 3. Для поддержания эксплуатационного режима работы скважин и продления срока их службы, необходимо проведения своевременных восстановительных профилактических и ремонтных мероприятий с периодичностью, не превышающей рациональных межремонтных сроков регенераций скважин. При определении рационального межремонтного периода регенерации необходимо учитывать природные условия каждой скважины индивидуально, а также эксплуатационные характеристики и её состояние, определяемые наблюдениями в течение всего срока службы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Гаврилко, В.М. Фильтры буровых скважин / В.М. Гаврилко, В.С. Алексеев. 2-е изд. М.: Недра, 1976. 345 с.
- 2. Ивашечкин, В.В. Газоимпульсная технология восстановления пропускной способности фильтров водозаборных скважин / В.В. Ивашечкин; под ред. А.Д. Гуриновича. Минск: БНТУ, 2005. 270 с.
- 3. Плотников, Н.А. Проектирование и эксплуатация водозаборов подземных вод / Н.А. Плотников, В.С. Алексеев. М.: Стройиздат, 1990. 256 с.
- 4. Houben, G. Regenerierung und sanierung von Brunnen / G. Houben, C. Treskatis. Munchen: Oldenbourg industriever, 2003. 280 s.
- 5. Гуринович, А.Д. Питьевое водоснабжение из подземных источников: проблемы и решения / А.Д. Гуринович. Минск.: Технопринт, 2001. 305 с.
- 6. Алексеев, В.С. Методика прогноза химического кольматажа водозаборных скважин / В.С. Алексеев // Водоснабжение и санитарная техника. 1968. №10. С. 28-31.
- 7. Опытно-фильтрационные работы / В.М. Шестаков [и др.]; под общ. ред. В.М. Шестакова. М.: Недра, 1974. 204 с.
- 8. Справочник по бурению и оборудованию скважин на воду / В.В. Дубровский [и др.]; под общ. ред. В.В. Дубровского. М.: Недра, 1972. 512 с.
- 9. Квашнин, Г.П. Водозаборные скважины с гравийными фильтрами / Г.П. Квашнин, А.И. Деревянных. М.: Недра, 1981. 216 с.
- 10. Шейко, А. М. Анализ долговечности водозаборных скважин г.Минска / А.М. Шейко, В.В. Ивашечкин, Н.В. Холодинская, Э.А. Макарова // Вестник БНТУ. -2006. − № 1. − C. 27-32.
- 11. Работнова, И.Л. Общая микробиология / И.Л. Работнова. М., 1966. 260 с.

СВЕДЕНИЯ ОБ АВТОРАХ

Шейко Андрей Михайлович, Белорусский национальный университет, аспирант каф. «Гидравлика» т. г. Минск (029) 77-095-42 (e-mail: andro@tut.by)

Ивашечкин Владимир Васильевич, Белорусский национальный университет, к.т.н., доцент каф. «Гидравлика», г. Минск т.(029) 7-56-99-32

Гуринович Анатолий Дмитриевич, Белорусский национальный университет, профессор каф. «Экономика строительства», г. Минск.

Галицкий Вячеслав Анатольевич, УП «Минскводоканал», инженер, г. Минск.

АННОТАЦИЯ

УДК 628.112.4

ШЕЙКО А.М., ИВАШЕЧКИН В.В., ГУРИНОВИЧ А.Д., ГАЛИЦКИЙ В.А. Прогноз кольматажа скважин и определение рациональных сроков их регенерации // Вестник БГТУ. – 2006.

Исследованы закономерности снижения удельного дебита во времени. Показано, что межремонтный период скважин для г. Минска зависит от природных условий, наличия гравийной засыпки и ее качества, правильности эксплуатации и незначительно зависит от абсолютных значений показателя Ризнера и количества растворенного в воде железа. Определен ориентировочный рациональный межремонтный период для водозаборов г. Минска для условий естественного старения скважин при понижении первоначального удельного дебита на 25 %. Приведены рекомендации по поддержанию эксплуатационного режима работы скважин и продлению срока их службы. Установлено, что необходимо проведения своевременных ремонтных мероприятий с периодичностью, не превышающей рациональных межремонтных сроков регенераций скважин. При этом необходимо учитывать природные условия каждой скважины индивидуально, а также эксплуатационные характеристики и её состояние, определяемые наблюдениями в течение всего срока службы. Ил. 3. Табл. 1. Библ. 11 назв.