Министерство образования и науки Украины Национальный горный университет

Кафедра техники разведки месторождений полезных ископаемых

Пояснительная записка

по курсовому проекту по курсу бурение скважин на воду

Студента группы РТ-01-1 Алещева А. А. Руководитель курсового проекта: Асс. Хоменко В. Л.

Днепропетровск 2005г.

Содержание

Введение	3
1. Геолого-технические условия бурения скважины	
2. Выбор и расчет водоприемной части скважины	
3. Выбор водоподъёмной установки	
Расчет эрлифта.	
Расчет водоподъемника	
4. Выбор способа бурения и проектная конструкци	RI
скважины.	7
Проектирование конструкции скважины при роторном способе бурения	
5. Выбор бурового оборудования и инструмента	8
Технические характеристики буровой установки УБВ-600	
6. Выбор очистного агента	9
7. Технология бурения	10
Подготовительные работы	
Общий порядок сооружения скважины	
Забурка скважины под направление	
Расчет цементирования под направление	10
Бурение по продуктивным толщам	11
Расчет цементирования эксплуатационной колонны.	11
8. Вскрытие и освоение водоносного горизонта	12
Бурение по водоносному горизонту.	12
9. Монтаж фильтра и водоподъемной установки	
10. Техника безопасности	
Список литературы	

Введение.

Курсовое проектирование по бурению скважин на воду является важным этапом в подготовке студентов и преследует цель закрепления теоретических знаний по курсу, выработки навыков применения этих знаний для решения конкретных инженерных задач в комплексе.

Курсовой проект включает пояснительную записку и графическое приложение. Пояснительная записка должна иметь объем не более 20-25 страниц текста на листах стандартного формата A4.

Данный курсовой проект предусматривает бурение разведочноэксплуатационной скважины для питьевого водоснабжения, проектная глубина которой составляет — 260 метров.

1. Геолого-технические условия бурения скважины.

Данный геологический разрез представлен следующими породами: суглинок, мел, лесс, глина, известняк, песчаник, аргиллит, песок мелкозернистый. Категория по буримости - II-VII. При бурении возможны следующие осложнения: сужение ствола скважины при набухании глин, частичное поглощение промывочной жидкости в известняках. Геологический разрез и краткая его характеристика, включающая мощности пластов и категорию пород по буримости приведены в графической части проекта на ГТП.

Водоносный горизонт сложен мелкозернистым песком. Имеет мощность 25 метров. Категория по буримости — ІІ-ая. Глубина залегания кровли водоносного пласта 235 метров. Проектный дебит — 21 м 3 /ч. Статический и динамический уровни соответственно равны 19 и 40 метров.

Глубина	Краткое	Мощность	Категория по	Зоны возм.
	•	·	_	
подошвы	описание	слоя	буримости	осложнений
слоя				
3	Суглинок	3	II	
26	Мел	23	III	
46	Суглинок	20	III	
82	Лесс	36	II	
124	Глина	42	IV	
157	Мел	33	III	
196	Известняк	39	VII	Част. погл.
216	Песчаник	20	V	
235	Аргиллит	19	VI	
260	Песок	25	II	
	мелкозернистый			

2. Выбор и расчет водоприемной части скважины.

Тип водоприемной части зависит от характера пород водоносного горизонта. Так как водоносный горизонт сложен мелкозернистым песком II-ой категории по буримости, то принимаем фильтровую водоприемную часть. В соответствии с рекомендациями СНиП II-31-74 по выбору фильтров принимаем трубчатый фильтр с однослойной гравийной обсыпкой.

Расчет водоприемной части.

Так как мощность пласта более 10 метров, то принимаем диаметр водоприемной части, а рассчитываем длину.

$$L=Q/(B \bullet d \bullet V_{\phi} \bullet W)$$

Q – дебит скважины; d – диаметр водоприемной части; V_{φ} – допустимая скорость фильтрации воды; W – скважность фильтра. Принимаем W равной 1.

$$V_{\phi}=65 \cdot ^3/K_{\phi}$$

 K_{φ} — коэффициент фильтрации, м/сут; коэффициент фильтрации принимаем равным - K_{φ} =5 м/сут.

$$V_{\phi} = 65 \cdot ^{3} / 5 = 111,2 \text{ m}^{3}/\text{cyt} = 4,7 \text{ m}^{3}/\text{q}$$

Диаметр каркаса фильтра по ГОСТу на обсадные трубы принимаем Ø $114 \, \mathrm{mm}$.

$$d_{\phi} = (d_{\kappa} + 2) = 114 + 2 \cdot 50 = 214 \text{ mm}$$

 d_{κ} – диаметр каркаса

) - толщина обсыпки принимаем=50 мм

Принимаем L=7 м.

Диаметр отверстий = $3 \cdot 0.25 = 0.75$

Длина надфильтровой трубы принимается равной из условия ее выхода из под башмака эксплуатационной колонны не менее чем на 5 м, исходя из этого принимаем длину надфильтровой трубы -14,5 м. Длину отстойника принимаем равной 9,5м.

Общая длина фильтра будет равна:

$$L_{\phi}$$
=7+14,5+9,5=30 м.

Проверка фильтра по его водопропускной способности: должно выполняться условие f>Q, в свою очередь

$$f=V_{\phi} \cdot d \cdot B \cdot L=4,7 \cdot 0,214 \cdot 7 \cdot 3,14=22,11 \text{ m}^3/\text{y}$$

Фильтр удовлетворяет заданным условиям так как 22,11>21.

3. Выбор водоподъёмной установки.

Условие работы водоподъемников в период откачек и постоянной эксплуатации не одинаковы. В первом случае вода, как правило, содержит много механических примесей, во втором – она должна быть свободна от них. Продолжительность откачек по сравнению со сроком эксплуатации скважины

ничтожно мала. Кроме того, в процессе откачек и количества отбираемой воды и динамический уровень сильно меняются. Во время эксплуатации они близки к постоянному. Поэтому для опытной откачки следует использовать в первую очередь эрлифты, а для постоянной эксплуатации насосы с более высоким КПД. В соответствии с рекомендациями по выбору типа водоподъемной установки для постоянной эксплуатации принимаем погружной центробежный насос типа ЭЦВ.

Расчет эрлифта.

1. Определяем глубину погружения смесителя от уровня излива

$$H=h \cdot k$$

h – глубина динамического уровня воды от уровня излива

k – коэффициент погружения. принимаем =2,5

$$H=50 \cdot 2,5=125 \text{ M}.$$

2. Определение удельного расхода воздуха

$$V_0 = h/(c \cdot lg((h \cdot (\kappa-1)+10)/10))$$

с – коэффициент, зависящий от коэффициента погружения = 13,1

 V_0 =50/(13,1 •1g((50 •(2,5-1)+10)/10))=4,11 м³ на один м³ поднятой воды

3. Полный расход воздуха

$$W_{\rm p} = Q \cdot V_0/60$$

где Q – дебит

$$W_B = 21 \cdot 4,11/60 = 1,44 \text{ m}^3/\text{MuH}.$$

4. Пусковое давление воздуха

$$p_0=0,1 \bullet (\kappa \bullet h-h_0+2)$$

где h_0 – глубина статического уровня воды

$$p_0=0,1 \cdot (2,5 \cdot 50-29+2)=9,8 \text{ кг/см}^3$$

5. Рабочее давление воздуха

$$p_p=0,1 \bullet [h \bullet (k-1)+5]=0,1 \bullet [50 \bullet (2,5-1)+5]=8 \text{ кг/см}^3$$

6. Расход эмульсии непосредственно выше форсунки

$$q_1 = (Q/3600) + (W/60 \cdot (p_p-1)) = (21/3600) + (1.44/60 \cdot (8-1)) = 0.0093 \text{ m}^3/\text{c}$$

7. Расход эмульсии при изливе

$$q_2 = (Q/3600) + (W/60) = (21/3600) + (1,44/60) = 0,0298 \text{ m}^3/\text{c}$$

8. Площадь сечения водоподъемной трубы у форсунки

$$w_1 = q_1/v_1 = 0,0093/2,1 = 0,0044 \text{ m}^2$$

 v_1 – скорость движения эмульсии у форсунки. Принимаем = 2,1 м/с

9. Площадь сечения водоподъемной трубы у излива

$$w_2 = q_2/v_2 = 0.0298/7 = 0.0043 \text{ m}^2$$

 v_1 – скорость движения эмульсии на изливе. Принимаем = 7 м/с

10.Внутренний диаметр водоподъемной трубы

$$d=/(4 \cdot w_2/B)=/(4 \cdot 0.0043/3.14)=0.074 \text{ M}.$$

Принимаем диаметр водоподъемных труб равным 76 мм ГОСТ 6238-77

Диаметр воздухопроводных труб принимаем равным 27 мм ГОСТ 3262-75.

11. Производительность компрессора:

$$W_k=1,2 \bullet W_B=1,2 \bullet 1,44=1,728 \text{ m}^3/\text{MuH}.$$

12. Рабочее давление компрессора

$$p_{\kappa} = p_{p} + 0.5 = 8 + 0.5 = 8.5 \text{ кг/см}^{3}$$

13. Расчетная мощность на валу компрессора

$$N_k = N_0 \cdot p_k \cdot W_k = 1,18 \cdot 8,5 \cdot 1,728 = 17,33 \text{ kBt}$$

 N_0 – удельная мощность = 1,18 кВт.

14. Действительная мощность на валу компрессора

$$N_{\pi}=1,1 \cdot N_{k}=1,1 \cdot 17,33=19,06 \text{ kBt.}$$

15. Коэффициент полезного действия установки

$$0 = 1000 \bullet Q \bullet h/(1,36 \bullet N_{\pi} \bullet 75) = 1000 \bullet 21 \bullet 50/(1,36 \bullet 19,06 \bullet 75 \bullet 3600) = 0.15$$

Принимаем в качестве компрессора для эрлифта компрессор КТ-7.

Расчет водоподъемника.

Выбор марки водоподъемника определяется по дебиту скважины и напору, который должен развить насос.

Н_м – манометрический напор

Н_{гд} – геодезическая высота подачи

 $H_{\mbox{\scriptsize вp}}$ – потери напора

$$H_{r_{\text{\tiny T}}} = h_{_{\text{\tiny T}}} + h_{_{\text{\tiny M}}} = 40 + 10 = 50 \text{ M}.$$

 $h_{\scriptscriptstyle \rm H}$ – высота излива

h_д – динамический уровень

 $h_{\scriptscriptstyle \rm II}$ – высота излива

$$H_{Bp}=0,1 \bullet H=0,1 \bullet 55=5,5 \text{ M}.$$

Н – длина напорного трубопровода.

$$H = H_{r_{\text{I}}} + h_3 = 50 + 5 = 55 \text{ m}.$$

 h_3 – заглубление насоса под динамический уровень, принимаем = 5м.

$$H_{\text{\tiny M}} = H_{\text{\tiny FZ}} + H_{\text{\tiny BP}} = 50 + 5, 5 = 65, 5 \text{ M}.$$

Эксплуатационные потери: $H_3 = 0.08 \cdot H_M = 0.08 \cdot 65.5 = 5.24 \text{ м}$.

Общий напор равен Ноб= $H_{\scriptscriptstyle M}$ + $H_{\scriptscriptstyle 3}$ =65,5+5,24=70,74 м.

Исходя из данных расчета напорной характеристики, которую необходимо обеспечить, принимаем центробежный погружной насос марки ЭЦВ8-25-100, который удовлетворяет нашим требованиям.

Диаметр водоподъемной трубы 76 мм.

Рабочая характеристика насоса приведена в графической части проекта.

Модернизация насоса

Излишек напора:)H= H_{M}^{H} - H_{M} =100-70,74=29,26 м.

Напор, развиваемый одной ступенью насоса: $H_1 = H_{\text{нм}} / N_{\text{ст}} = 100 / 7 = 14,3 \text{ м}.$

Количество снимаемых ступеней:) N_{cr} =) H/H_1 =29,26/14,3=2,046

Принимаем) N_{cr} =2.

4. Выбор способа бурения и проектная конструкция скважины.

Выбор способа бурения производится на основе предварительного изучения геолого-технических условий бурения, а также по ранее пробуренным на данной территории скважинам и в соответствии с рекомендациями по выбору способа бурения. Принимаем роторный способ бурения с прямой промывкой.

Проектирование конструкции скважины при роторном способе бурения.

1. Диаметр водоприемной части скважины:

$$d_{BH} = 214 \text{ MM}.$$

- 2. Уточняем диаметр долота для бурения водоприемной части по ГОСТу на долота: $d_{\mbox{\tiny BЧ}} = 214$ мм.
- 3. Внутренний диаметр эксплуатационной колонны определяют из условия наличия зазора между долотом и колонной

$$d_{2K} = d_{BH} + 8 = 214 + 8 = 222 \text{ MM}.$$

4. Наружный диаметр эксплуатационной колонны Уточняем диаметр по ГОСТу.

$$d_{_{3K}}^{_{BH}} = 259 \text{ MM.}$$
 $d_{_{3K}}^{_{H}} = 273 \text{ MM}$

5. Диаметр долота для бурения под эксплуатационную колонну:

$$d_{\mathfrak{I}_{K}}^{}=d_{\mathfrak{I}_{K}}^{}+26$$

б – зазор между стенками скважины и наружной поверхностью муфты

$$d_{_{9K}}^{}^{}=273+2 \cdot 20=313$$
 mm.

6. Диаметр долота для бурения под эксплуатационную колонну уточняют по ГОСТу:

$$d_{_{9K}}^{}=349,2 \text{ MM}.$$

7. Внутренний диаметр направления:

$$d_{H}^{B} = d_{9K}^{A} + 50 = 349,2 + 50 = 399,2 \text{ MM}.$$

8. Уточняем внутренний и наружный диаметр направления по ГОСТу на обсадные трубы:

$$d_{\rm H}^{\rm B}$$
=406 mm. $d_{\rm H}^{\rm H}$ =426 mm.

9. Выбираем диаметр долота для бурения под направление

$$d_{\rm H}^{6} = d_{\rm H}^{H} + 50 = 426 + 50 = 476 \text{ MM}.$$

10. Уточняем диаметр долота для бурения под направление по ГОСТу на долота:

$$d_{H}^{J} = 490 \text{ MM}.$$

- 11. Глубину бурения под направление принимаем $L_{\scriptscriptstyle H}\!\!=\!\!6$ м.
- 12. Длина эксплуатационной колонны

$$L_{_{9 \text{K}}} = H_{_{KP}} + h_{_3} = 235 + 1 = 236 \text{ м}.$$

 $H_{\kappa p}$ – глубина кровли залегания водоносного горизонта. h_3 – глубина заглубки в водоносный горизонт.

5. Выбор бурового оборудования и инструмента.

Выбор буровой установки осуществляется с таким расчетом, чтобы значение таких ее параметров технической характеристики, как глубина бурения, начальный и конечный диаметры бурения соответствовали (были больше или равны) значениям аналогичных параметров конструкции скважины. Учитывая вышесказанное выбираем установку УБВ-600.

Технические характеристики буровой установки УБВ-600.

Параметры Значения				
Параметры				
Основной способ бурения	Вращательный с промывкой			
Глубина бурения	600 м. Диаметр 114 мм.			
Рекомендуемые диаметры скважин,				
MM:				
начальный-	490			
конечный-	214			
Транспортная база	КрАЗ – 257 (2 шасси)			
Силовой привод	ЯМЗ-238 2 двигателя 150x2			
Мачта	Телескопическая наклонная			
Высота до оси кронблока, м.	22,4			
Длина бурильной трубы/свечи, м.	12			
Механизм вращения	Ротор			
Частота вращения (основные передачи), об/мин	105, 183			
Число передач основных и вспомогательных	2/3			
Крутящий момент, кгс • м	1700			
Буровой насос	9МГр-61 - 2 насоса			
Подача максимальная, л/с	32			
Давление максимальное, кгс/см ³	150			
Компрессор	KT-7			
Подача, м ³ /мин	5,3			
Давление, МПа	0,8			

Проводим проверку установки на грузоподъемность проверкой условия $Q_k < [Q].$

$$Q_k = q_1 \bullet L \bullet \ (1 - (p_{\scriptscriptstyle 3K}/p_{\scriptscriptstyle M})) = 41,1 \bullet 236 (1 - (1200/7850)) = 8251,7 \ {\rm K}\Gamma = 8,286 \ {\rm T}$$

q₁ – масса 1 метра обсадной колонны

 $p_{_{\mathrm{M}}}$ и $p_{_{\mathrm{M}}}$ – плотности жидкости и стали соответственно

L – длина обсадных труб

Установка подходит.

Диаметр бурильных труб выбираем из условия: $d_{\text{бт}}=0,45 \cdot d_{\text{д}}$ Под водоприемную часть:

$$d_{\text{бт}}=0,45 \cdot 214=96,3 \text{ MM}.$$

Уточняем по ГОСТу $d_{\text{бт}}$ =102 мм.

Под эксплуатационную часть:

$$d_{6T} = 0.45 \cdot 349.2 = 157 \text{ MM}.$$

Уточняем по ГОСТу $d_{\delta T} = 168$ мм.

Диаметр утяжеленных бурильных труб

$$d_{y\delta T} = (0,7-0,8) d_{\pi}$$

Под водоприемную часть

$$d^{\text{B}}_{\text{yot}}=0,7 \cdot 214=149,8 \text{ mm}.$$

Уточняем по ГОСТу $d^{B}_{VOT} = 178$ мм.

Под эксплуатационную:

$$d_{y6T}^{9K} = 0.7 \cdot 349.2 = 244.4 \text{ MM}.$$

Уточняем по ГОСТу $d^{9K}_{yot} = 203$ мм.

Выбор конкретных типоразмеров породоразрушающего инструмента осуществляется в зависимости от свойств горных пород и диаметров бурения по проектной конструкции скважины с учетом существующей номенклатуры по действующим ГОСТам и отраслевым нормалям.

Принимаем по ГОСТу 20692-75 следующие долота:

Для бурения под направление – Д490СГ.

Для бурения под Эксплуатационную колонну – Б-349,2СЦВ.

Для бурения принимаем долото 3Л-214.

6. Выбор очистного агента.

Геологический разрез сложен мягкими и средними породами II — VII категорий по буримости. При бурении возможны следующие осложнения: сужение ствола скважины при набухании глин, частичное поглощение в известняках, осыпание аргиллитов, поглощение промывочной жидкости в песках. Поэтому в интервале залегания этих пород предполагается применение нормального глинистого раствора со следующими свойствами: плотность 1,1 — 1,2 г/см³; условная вязкость 20 — 22 с.; содержание песка не более 4%; водоотдача 8 — 10 см³ за 30 мин; толщина глинистой корки 1 — 2 мм. Для получения такого раствора необходимо добавить реагент УЩР (15 — 20%).

7. Технология бурения.

Подготовительные работы

Всё буровое и вспомогательное оборудование размещают на специальной площадке. Размещаются заземления, водные емкости, дом-общежитие, буровая установка.

Общий порядок сооружения скважины.

Забурка скважины под направление глубиной 6 метров осуществляется долотом диаметром 490 мм. Полученный интервал обсаживается трубами диаметром 426 мм с полной цементацией затрубного пространства.

Бурение по непродуктивным толщам в интервале 6 – 236 метров ведется долотом диаметром 349,2 мм с последующей установкой эксплуатационной колонны диаметром 273 мм с выходом на дневную поверхность также с полной цементацией затрубного пространства.

Дальнейшее бурение до проектной глубины 260 м. ведется по водоносной породе долотом диаметром 214 мм.

Забурка скважины под направление.

Осевая нагрузка создается собственным весом бурового снаряда.

Частота вращения принимается: n=105 об/мин.

Подача промывочной жидкости максимальная, но посредством одного насоса =32 n/c.

Расчет цементирования под направление.

1. Плотность цементного раствора: $p_{\text{цp}} = p_{\text{в}} \cdot p_{\text{ц}} \cdot (1+m)/(p_{\text{в}} + m \cdot p_{\text{ц}}),$

где $p_{\scriptscriptstyle B}$ — плотность воды

 $p_{\scriptscriptstyle \rm II}$ – плотность цемента

т – водоцементное отношение

$$p_{IID}=3100 \cdot 1000 \cdot (1+0.5)/(1000+0.5 \cdot 3100)=1830 \text{ кг/м}^3$$

2. Необходимое количество цементного раствора

$$V_{up}=0.785 \bullet [(\kappa \bullet D^2-d_H^2) \bullet h_u+d^2 \bullet h]$$

к – коэффициент, учитывающий возможное увеличение диаметра скважины

D – диаметр скважины, м

d_н – наружный диаметр обсадных труб, м

d – внутренний диаметр обсадных труб, м

h_ц – высота подъема цемента в затрубном пространстве

h – высота цементного стакана

$$V_{up} = 0.785 \cdot [(1.3 \cdot 0.49^2 - 0.426^2) \cdot 6 + 0.406^2 \cdot 5] = 1.26 \text{ m}^3$$

3. Необходимое количество сухого цемента

$$Q_{\mathfrak{I}} = K_{\mathfrak{I}} \bullet q_{\mathfrak{I}} \bullet V_{\mathfrak{I}\mathfrak{p}}$$

 $\kappa_{\scriptscriptstyle \rm II}$ – коэффициент, учитывающий потери цемента.

$$Q_{\text{u}}$$
=1,1 • 1,22 • 1,26=1,69 т.

4. Необходимый объем воды

$$V_B = (m \cdot Q_{II})/(\kappa_{II} \cdot p_B) = (1.69 \cdot 0.5)/(1.1 \cdot 1) = 0.77 \text{ m}^3$$

5. Количество продавочной жидкости

$$V_{np}=0.785 \cdot \kappa_2 \cdot d^2 \cdot (L-h)=0.785 \cdot 1.05 \cdot 0.406^2 \cdot (6-5)=0.136 \text{ m}^3$$

к2 - коэффициент, учитывающий сжимаемость жидкости

Бурение по непродуктивным толщам.

Осевая нагрузка бкдет создаваться УБТ диаметром 245 мм с весом одного метра трубы q_{1m} =232 даH, длина необходимого УБТ будет составлять:

$$L_{y\delta T} = P \cdot \kappa/(q_{1M} \cdot (1-p_{\kappa}/p_{M}))$$

На интервале залегания пород I-IV категорий

$$P=p_{v_{\pi}} \bullet D=100 \bullet 34,92=3490$$
 кг=3490 даН.

Принимаем Р=3500 даН.

$$L_{yбт} = P \cdot \kappa/(q_{1M} \cdot (1-p_{x}/p_{M})) = 3500 \cdot 1,25/(232 \cdot (1-1,2/7,85)) = 22,26 \text{ м}$$

С учетом длины свечи (12 м) принимаем длину УБТ – 24 м.

Частота вращения n=105 об/мин

На интервале залегания пород VI-VII категорий:

$$P=p_{yx} \cdot D=200 \cdot 34,92=6980$$
 кг=6980 даН.

$$L_{y6T} = P \cdot \kappa/(q_{1M} \cdot (1-p_{x}/p_{M})) = 6980 \cdot 1,25/(232 \cdot (1-1,2/7,85)) = 44,4 \text{ M}$$

Принимаем длину УБТ – 48 м.

В соответствии с технической характеристикой установки принимаем n=183 об/мин

$$Q=0.785 \cdot (D^2-d^2) \cdot V_n$$

D - наибольший диаметр скважины или обсадных труб, м

d - наружный диаметр бурильных труб, м

 $V_{\rm n}$ - скорость восходящего потока, м/с

$$Q=0.785 \cdot (0.3492^2-0.168^2) \cdot 0.2=0.015 \text{ м}^3/\text{c}$$
; принимаем $Q=15 \text{ л/c}$

Расчет цементирования эксплуатационной колонны.

- 1. Плотность цементного раствора: $p_{\text{цp}} = p_{\text{в}} \cdot p_{\text{ц}} \cdot (1+\text{m})/(p_{\text{в}} + \text{m} \cdot p_{\text{ц}}),$ $p_{\text{цp}} = 3100 \cdot 1000 \cdot (1+0,5)/(1000+0,5 \cdot 3100) = 1830 \text{ кг/м}^3$
- 2. Необходимое количество цементного раствора

$$V_{\mu\nu} = 0.785 \cdot [(\kappa \cdot D^2 - d_{\mu}^2) \cdot h_{\mu} + d^2 \cdot h]$$

 $V_{\mu\nu} = 0.785 \cdot [(1.3 \cdot 0.3492^2 - 0.245^2) \cdot 236 + 0.2305^2 \cdot 7] = 18,46 \text{ m}^3$

3. Необходимое количество сухого цемента

$$Q_{u} = \kappa_{u} \cdot q_{u} \cdot V_{up}$$

 $Q_{u} = 1, 1 \cdot 1, 22 \cdot 18, 46 = 24,77 \text{ T.}$

4. Необходимый объем воды

$$V_{\scriptscriptstyle B} = (m \bullet Q_{\scriptscriptstyle \rm II}) / (\kappa_{\scriptscriptstyle \rm II} \bullet p_{\scriptscriptstyle B}) = (24,77 \bullet 0,5) / (1,1 \bullet 1) = 11,26 \text{ m}^3$$

5. Количество продавочной жидкости

$$V_{np} = 0.785 \cdot \kappa_2 \cdot d^2 \cdot (L-h) = 0.785 \cdot 1.05 \cdot 0.2305^2 \cdot (235-7) = 9.985 \text{ m}^3$$

6. Давление на оголовке скважины в конце цементирования на момент схождения пробок

$$p=p_r+g \bullet (h_{\scriptscriptstyle II}-h) \bullet (p_{\scriptscriptstyle IIp}-p_{\scriptscriptstyle IIp})$$

 $p_{\scriptscriptstyle \Gamma}$ - потери на гидравлическое сопротивление

$$p_r$$
=0,001 • L+0,8=0,001 • 236+0,8=1,035 МПа
p=1,035 • 10⁶+9,8 • (235-7) • (1830-1200)=2,443 МПа

7. Суммарная производительность цементировочных агрегатов при продавке цементного раствора

$$Q=0.785 \cdot (D^2_c-D^2) \cdot \kappa \cdot V = 0.785 \cdot (0.3492^2-0.245^2) \cdot 1.2 \cdot 1.5 = 0.0873 \text{ m}^3/\text{c}$$

Для обеспечения такой подачи принимаем 3 цементировочных агрегата марки 3ЦA-400 с максимальной подачей $0.033 \text{ m}^3/\text{c}$.

- 8. Продолжительность цементирования скважины: $T=t_1+t_2+t_3$
- t_1 время закачки цементного раствора
- t₂ время установки верхней пробки =15 мин
- t₃ время продавки

$$t_1 = V_{\text{пр}}/(n \bullet q_n) = 18,46/(3 \bullet 0,033) = 186,46 \text{ c} = 3,11 \text{ мин} \\ t_3 = V_{\text{пр}}/(n \bullet q_n) = 9,985/(3 \bullet 0,033) = 100,86 \text{ c} = 1,68 \text{ мин} \\ T = 3,11 + 1,68 + 15 = 19,79 \text{ мин}.$$

Время начала загустевания цементного раствора должно быть больше продолжительности цементирования с 25% запасом времени 19,79<60 условие выполняется.

8. Вскрытие и освоение водоносного горизонта.

Исходя из того, что водоносный горизонт сложен мелкозернистым песком, принимаем для вскрытия продуктивного пласта вращательный способ бурения с прямой промывкой меловым раствором. Раствор имеет следующие параметры:

Плотность, $\Gamma/\text{см}^3 - 1,35 - 1,4$;

Вязкость, c - 40 - 60;

Статическое напряжение сдвига, $Mrc/M^2 - 100$;

Водоотдача, $cm^3/30$ мин – 5 – 10.

Преимущество этих растворов в том, что образуемая на стенках скважины корка легко разрушается при кислотной обработке пласта.

При подготовке к вскрытию проводят очистку отстойников, устройств отвода использованной промывочной жидкости от устья скважины, проверяют и подготавливают фильтровую колонну: устанавливают центрирующие фонари, и нижний левый переходник с обратным клапаном, устанавливают сальник в надфильтровой части.

Бурение по водоносному горизонту.

Осевая нагрузка на долото

Принимаем Р=1100 даН.

Осевая нагрузка будет создаваться УБТ диаметром 178 мм с весом одного метра трубы q_{1m} =202 даH, длина необходимого УБТ будет составлять:

$$L_{\text{убт}} = P \bullet \kappa / (q_{1\text{м}} \bullet (1 - p_{\text{ж}} / p_{\text{м}})) = 1100 \bullet 1,25 / (202 \bullet (1 - 1,2 / 7,85)) = 8 \text{ м}$$

С учетом длины свечи (12 м) принимаем длину УБТ - 12 м. Частота вращения принимается минимальная n=105 об/мин Расход промывочной жидкости

$$Q=0.785 \cdot (0.214^2-0.102^2) \cdot 0.2=0.0055 \text{m}^3/\text{c}=5.5 \text{ m/c}$$

Перед каждым наращиванием бурильной колонны пройденный интервал необходимо пройти 1-2 раза с максимальной промывкой.

9. Монтаж фильтра и водоподъемной установки.

До установки насоса скважину необходимо прокачать эрлифтом, т. к. наличие в ней песка и мусора неминуемо приведет к аварии.

До монтажа насоса на скважине следует проверить, нет ли в нем заеданий и перекосов, которые могли возникнуть в результате транспортировки.

Монтируют агрегат следующим образом.

- 1. Питающий кабель соединяют с выводными концами электродвигателя пайкой в соединительной гильзе, места пайки тщательно изолируют.
- 2. Трубу с муфтой ввертывают в верхний патрубок насоса до отказа и застопоривают двумя винтами.
- 3. Монтажный хомут закрепляют на трубе у торца муфты и подсоединяют металлическими стропами к крюку тали или блока.
- 4. Агрегат поднимают в вертикальное положение и опускают в скважину, в резьбу муфты ввертывают трубу.

Питающий кабель следует укладывать вдоль колонны труб, закрепляя его скобами крепления через интервалы 3 м. В местах крепления к трубам кабель следует обернуть резиновой или изоляционной лентой.

Электронасос должен быть опущен на 3-5 м ниже динамического уровня воды в скважине, но не ближе 2,5 м от забоя скважины.

Рабочую часть фильтра устанавливают на расстоянии 0,5-1,0 м от кровли и подошвы пласта во избежание случайного попадания пород кровли и подошвы в фильтр. В пластах мощностью более 10 метров длину фильтра устанавливают, исходя из заданной производительности водоотбора.

10. Техника безопасности.

- 1. Общие требования
- 1.1. К работе допускаются лица, достигшие 18 лет, прошедшие медицинский осмотр и курсовое обучение по профессии.
- 1.2. При поступлении на работу бурильщик должен пройти у инженера вводный инструктаж по Т.Б., а перед непосредственным допуском к работе инструктаж на рабочем месте у руководителя работ на объекте.
- 1.3. Через каждые 6 месяцев работы помощник бурильщика должен проходить повторный инструктаж по безопасному ведению работ и не менее 1 раза в год проверку знаний.
- 1.4. Все операции, выполняемые на высоте более 1,5 м должны проводиться со специальных площадок, огражденных перилами, на высоте 3 м с применением специальных крепежных поясов.
- 1.5. Применение открытого огня и курение разрешается только в специально отведенных местах.
- 1.6. При несчастных случаях необходимо оказать первую медицинскую помощь, затем сообщить буровому мастеру и вызвать скорую медицинскую помощь.
- 1.7. Прокладка подъездных путей, сооружение буровой установки, размещение оборудования, устройство оборудования отопления, освещения должны производиться по схемам и типовым проектам монтажа, утвержденным руководством.

Список литературы.

- 1. Методические указания по курсовому проектированию «Бурение скважин на воду», Кожевников А.А. Днепропетровск, 1984.
- 2. Справочник по бурению скважин на воду под редакцией проф. Башкатова Д. Н. М.: Недра, 1979.
- 3. Справочник по бурению скважин на воду под редакцией проф. Дубровского В. В. – М.: Недра, 1872.
- 4. Технология бурения геологоразведочных скважин, Винниченко, Максименко. М.: Недра, 1988.