ICS 91,140,60

Adoptat la 02.09.2015

Contoare de apă pentru apă potabilă rece şi apă caldă. Partea 3: Formatul raportului de încercare

Счетчики воды для холодной питьевой воды и горячей воды. Часть 3: Формат протокола испытания

Water meters for cold potable water and hot water. Part 3: Test report format

Prezentul standard este identic cu standardul european EN ISO 4064-3:2014

Prezentul standard înlocuieşte standardele SM SR EN 14154-1+A1:2010, SM SR EN 14154-2+A1:2010, SM SR EN 14154-3+A1:2010 care sînt anulate din data de 30.06.2017

INSTITUTUL NAȚIONAL DE STANDARDIZARE (INS)

Republica Moldova, mun. Chişinău, str. E. Coca, 28

Tel.: 22 905 303, fax: 22 905 333

www.standard.md

© INS, 2015

Reproducerea și utilizarea integrală sau parţială a prezentului standard în orice publicaţii și prin orice procedeu este interzisă fără acordul scris al INS.

BS EN ISO 4064-3:2014

Incorporating corrigendum November 2014

BSI Standards Publication

Water meters for cold potable water and hot water

Part 3: Test report format

National foreword

This British Standard is the UK implementation of EN ISO 4064-3:2014.

The UK participation in its preparation was entrusted by Technical Committee CPI/30, Measurement of fluid flow in closed conduits, to Subcommittee CPI/30/7, Volume flow-rate methods.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2014. Published by BSI Standards Limited 2014

ISBN 978 0 580 88480 1

ICS 91.140.60

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2014.

Amendments/corrigenda issued since publication

Date	Text affected
30 November 2014	Implementation of CEN Correction Notice 20 August 2014: Removal of supersession information from CEN and national forewords
30 November 2014	Implementation of CEN Correction Notice 15 October 2014: Corrected French title in CEN title page

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

June 2014

EN ISO 4064-3

ICS 91.140.60

English Version

Water meters for cold potable water and hot water - Part 3: Test report format (ISO 4064-3:2014)

Compteurs d'eau potable froide et d'eau chaude - Partie 3: Format du rapport d'essais (ISO 4064-3:2014)

Wasserzähler zum Messen von kaltem Trinkwasser und heißem Wasser - Teil 3: Format des Prüfberichtes (ISO 4064-3:2014)

This European Standard was approved by CEN on 21 September 2013.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Foreword

This document (EN ISO 4064-3:2014) has been prepared by Technical Committee ISO/TC 30 "Measurement of fluid flow in closed conduits" in collaboration with Technical Committee CEN/TC 92 "Water meters" the secretariat of which is held by SNV.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2014, and conflicting national standards shall be withdrawn at the latest by June 2017.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 4064-3:2014 has been approved by CEN as EN ISO 4064-3:2014 without any modification.

Cor	itent	S	Page
Fore	word		iv
Intro	ductio	n	v
1		e	
2	Norr	native references	1
3	Tern	ns, definitions, symbols, and abbreviated terms	1
4	Type 4.1 4.2 4.3 4.4 4.5 4.6	General Information concerning the type General information concerning the test equipment Check list for water meter examinations and performance tests Type evaluation tests (for all water meters) Type evaluation tests (for electronic water meters and mechanical water meters with electronic components)	1121323
5	Initi 5.1 5.2 5.3	Al verification report General Information concerning the EUT verified Initial verification test report (ISO 4064-2:2014 OIML R 49-2:2013, Clause 10)	68 68
Anne		ormative) List of documents concerning the type (ISO 4064-1:2014 OIML R 49-1:20	
Anne	e x B (no	ormative) Listing of test equipment used in examinations and tests	74

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2, www.iso.org/directives.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received, www.iso.org/patents.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committees responsible for this document are Technical Committee ISO/TC 30, Measurement of fluid flow in closed conduits, Subcommittee SC 7, Volume methods including water meters and OIML Technical Subcommittee TC 8/SC 5 Water meters.

This fourth edition of ISO 4064-3 cancels and replaces the third edition (ISO 4064-3:2005), which has been technically revised. Provisions of the third edition are addressed in ISO 4064-2:2014|OIML R 49-2:2013.

ISO 4064 consists of the following parts, under the general title *Water meters for cold potable water and hot water*:

- Part 1: Metrological and technical requirements
- Part 2: Test methods
- Part 3: Test report format
- Part 4: Non-metrological requirements not covered in ISO 4064-1
- Part 5: Installation requirements

This edition of ISO 4064-3 is identical to the corresponding edition of OIML R 49-3, which has been issued concurrently. OIML R 49-3 was approved for final publication by the International Committee of Legal Metrology at its 48th meeting in Ho Chi Minh City, Vietnam in October 2013. It will be submitted to the International Conference on Legal Metrology in 2016 for formal sanction.

Introduction

Implementation of this test report format is informative with regard to the implementation of ISO 4064-1|OIMLR 49-1 and ISO 4064-2|OIMLR 49-2 in national regulations; however, its implementation is required within the framework of the OIML Certificate System for Measuring Instruments [ISO 4064-2:2014|OIML R 49-2:2013, 11.1].

<u>Clause 4</u> shows the required format of a type evaluation report for a complete or combined water meter.

A type evaluation report for a separable calculator (including indicating device) or a measurement transducer (including flow or volume sensor) requires a similar format. However, some modifications to the tables may be required because a large number of variations in the design of these separable units is possible.

Some examples of tables for presenting the test results for separable units are shown in <u>Clause 5</u> for initial verifications. These tables can also be adapted for type evaluation reports.

Water meters for cold potable water and hot water —

Part 3:

Test report format

1 Scope

This part of ISO 4064|OIML R 49 specifies a test report format to be used in conjunction with ISO 4064-1|OIML R 49-1 and ISO 4064-2|OIML R 49-2 for water meters for cold potable water and hot water.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4064-1:2014|OIML R 49-1:2013, Water meters for cold potable water and hot water — Part 1: Metrological and technical requirements

ISO 4064-2:2014|OIML R 49-2:2013, Water meters for cold potable water and hot water — Part 2: Test methods

3 Terms, definitions, symbols, and abbreviated terms

For the purposes of this document, the terms and definitions given in ISO 4064-1|OIML R 49-1 apply.

Some symbols and abbreviated terms used in the tables are as follows.

+ pass

fail

n/a not applicable

EUT equipment under test

H horizontal

MAP maximum admissible pressure

MAT maximum admissible temperature

MPE maximum permissible error

V vertical

4 Type evaluation report

4.1 General

For each examination and test the checklist shall be completed according to this example:

+	_	
×		Pass
	×	Fail
n/a	n/a	Not applicable

4.2 Information concerning the type

4.2.1	General		
Application Application			
Applic	ant:		
Author repres	rized entative:		
Addres	SS:		
			
Testing labora			
Author repres	rized entative:		
Addres	SS:		
			
4.2.2	Model su	ıbmitted	
New m	odel:		
Varian	t of approv	ved model(s):	
Ap	proval nu	mber:	
Va	riation of	approved model:	
See Ta	ble 1.		

2

${\bf Table~1-Model~submitted}$

Submitted for approval tests	Yesa	Noa	Remarks
Mechanical water meter (complete)			
Mechanical water meter (combined)			
Electronic water meter (complete)			
Electronic water meter (combined)			
Family of water meters			
Separable calculator (including indicating device)			
Separable measurement transducer (including flow or volume sensor)			
Supplementary electronic device(s) for testing (permanently attached to meter)			
Supplementary electronic device(s) for data transmission (permanently attached to meter)			
Supplementary electronic device(s) for testing (temporarily attached to meter)			
Supplementary electronic device(s) for data transmission (temporarily attached to meter)			
Ancillary devices			
a Tick as appropriate.			

4.2.3 Mechanical water meter (complete or combined)

Manufacturer:		
Model number:		
Type details:		
Q_1	m ³ /h	
Q_2	m ³ /h	
Q_3	m ³ /h	
Q_4	m ³ /h	
02/01		

BS EN ISO 4064-3:2014 ISO 4064-3:2014(E)

for combination meters	
$Q_{\mathrm{x}1}$	m ³ /h
$Q_{ m x2}$	m ³ /h
Measuring principle:	
Accuracy class:	
Temperature class:	
Environmental class:	
Electromagnetic environment:	
Maximum admissible temperature:	°C
Maximum admissible pressure:	MPa (bar)
Orientation limitation:	
EUT testing requirements (ISO 4064	-2·2014 OIML R 49-2·2013 8 1 8)·
Category:	
	
Case:	
Installation details:	
Connection type (flange, screw thread, concentric manifold):	
Minimum straight length of inlet _ pipe:	mm
Minimum straight length of outlet pipe:	mm
Flow conditioner (details if required):	
Mounting:	·
Orientation:	·
Other relevant information:	
NOTE If a family of meters is submeter.	itted, the details in this subclause are to be given for each size of water

1

4.2.4 Electronic water meter (c	complete or combined)
Manufacturer:	
Model number:	
Type details:	
Q_1 m ³ /h	
Q_2 m^3/h	
Q_3 m ³ /h	
Q_4 m ³ /h	
Q3/Q1	
for combination meters	
$Q_{\rm x1}$	m ³ /h
Q_{x2}	m ³ /h
Measuring principle:	
Accuracy class:	
Temperature class:	
Environmental class:	
Electromagnetic environment:	
Maximum admissible temperati	ure:°C
Maximum admissible pressure:	MPa (bar)
Orientation limitation:	
EUT testing requirements (ISO 40	54-2:2014 OIML R 49-2:2013, 8.1.8):
Category:	
Case:	

BS EN ISO 4064-3:2014 ISO 4064-3:2014(E)

Installation details (mechanical):	
Connection type (flange, screw thread, concentric manifold):	
Minimum straight length of inlet pipe:	mm
Minimum straight length of outlet pipe	mm
Flow conditioner (details if required):	
Mounting:	
Orientation:	
Other relevant information:	
Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
Power supply:	
Type (battery, mains AC, mains DC):	
U_{max} :	V
U_{\min} :	V
Frequency:	Hz
NOTE If a family of meters is submitted, meter.	the details in this subclause are to be given for each size of water
4.2.5 Separable calculator (including	indicating device)
Manufacturer:	
Model number:	
Type details:	
Q_1 m ³ /h	
Q_2 m ³ /h	
Q_3 m ³ /h	
Q4 m ³ /h	
Q ₃ /Q ₁	

for combination meters	
$Q_{ m x1}$	m ³ /h
$Q_{ m x2}$	m ³ /h
Measuring principle:	
Accuracy class:	
Temperature class:	
Environmental class:	
Electromagnetic environment:	
Maximum admissible temperature:	°C
Maximum admissible pressure:	MPa (bar
Orientation limitation:	
Category: Case:	14 OIML R 49-2:2013, 8.1.8):
Maximum relative error specified by the m	nanufacturer:
Lower flow rate zone, $Q_1 \le Q < Q_2$:	%
Upper flow rate zone, $Q_2 \le Q \le Q_4$:	%
Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
Power supply:	
Type (battery, mains AC, mains DC):	
U_{max} :	V
U_{\min} :	V
Frequency:	Hz
Approval number(s) of compatible measurement transducer(s) (including flow or volume sensor):	

Separable measurement transducer (including flow or volume sensor) Manufacturer: _____ Model number: _____ Type details: _____ m³/h Q_1 _____ m^3/h Q_2 _____ m^3/h Q_3 _____ m^3/h Q_4 Q_3/Q_1 _____ for combination meters _____ m³/h $Q_{\rm x1}$ Q_{x2} _____ m³/h Measuring principle: Accuracy class: Temperature class: Environmental class: Electromagnetic environment: °C Maximum admissible temperature: Maximum admissible pressure: _____MPa (____ bar) Orientation limitation: EUT testing requirements (ISO 4064-2:2014|OIML R 49-2:2013, 8.1.8): Category: Case:

_____%

Maximum relative error specified by the manufacturer:

Upper flow rate zone, $Q_2 \le Q \le Q_4$: ______%

Lower flow rate zone, $Q_1 \le Q < Q_2$:

Installation details (mechanical):	
Connection type (flange, screw thread, concentric m fold):	ani
Minimum straight length of inlet pipe:	mm
Minimum straight length of outlet pipe:	mm
Flow conditioner (details if required):	
Mounting:	
Orientation:	
Other relevant information:	
Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
Power supply:	
Type (battery, mains AC, mains DC):	
<i>U</i> _{max} :	V
<i>U</i> _{min} :	V
Frequency:	Hz
Approval number(s) of compatible calculator(s) (including indicating device):	
4.2.7 Supplementary electronic device(s) used for	testing (permanently attached to meter)
Manufacturer:	
Model number:	
Power supply:	
Type (battery, mains AC, mains DC):	
<i>U</i> _{max} :	V
<i>U</i> _{min} :	V
Frequency:	Hz

BS EN ISO 4064-3:2014 ISO 4064-3:2014(E)

Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
4.2.8 Supplementary electronic device meter)	e(s) used for data transmission (permanently attached to
Manufacturer:	
Model number:	
Power supply:	
Type (battery, mains AC, mains DC):	
$U_{\sf max}$:	V
U_{\min} :	V
Frequency:	Hz
Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
4.2.9 Supplementary electronic devic	e(s) used for testing (temporarily attached to meter)
Manufacturer:	
Model number:	
Power supply:	
Type (battery, mains AC, mains DC):	
$U_{\sf max}$:	V
U_{\min} :	V
Frequency:	Hz

Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
4.2.10 Supplementary electronic device meter)	e(s) used for data transmission (temporarily attached to
Manufacturer:	
Model number:	
Power supply:	
Type (battery, mains AC, mains DC):	
U_{max} :	V
U_{\min} :	V
Frequency:	Hz
EUT testing requirements (ISO 4064-2:201	4 OIML R 49-2:2013, 8.1.8):
Category:	
Case:	·
Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
4.2.11 Ancillary devices	
Manufacturer:	
Model number:	

BS EN ISO 4064-3:2014 ISO 4064-3:2014(E)

Power supply:	
Type (battery, mains AC, mains DC):	
U_{max} :	V
U_{\min} :	V
Frequency:	Hz
Approval number(s) of compatible calculator(s) (including indicating device):	
EUT testing requirements (ISO 4064-2:2014 OI	ML R 49-2:2013, 8.1.8):
Category:	
Case:	
Installation details (electrical):	
Wiring instructions:	
Mounting arrangement:	
Orientation limitations:	
Approval number(s) of compatible water meters, calculator(s) (including indicating device) and measurement transducer(s) (including flow or volume sensor):	
4.2.12 Documents concerning the type	
A list of documents shall be submitted with the	type approval application as in <u>Annex A</u> .
4.3 General information concerning the	e test equipment
Details of all items of measuring equipment an initial verifications shall be listed in Annex B, ir	d test instruments used for the type examinations, and acluding:
Manufacturer	
Model number	
Serial number	
Date of last calibration	
Date of next calibration due of e.g. instrume	ents for measuring:
— linear dimensions	
pressure gauges	
pressure transmitters	

manometers

temperature transducers

- reference meters
- volume tanks
- weighing machines
- signal generators (for pulse, current or voltage)

4.4 Check list for water meter examinations and performance tests

4.4.1 Check list for water meter examinations

External examination for all water meters					
ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	_	Remarks	
	Function of the indicating device				
6.7.1.1	The indicating device shall provide an easily read, reliable and unambiguous visual indication of the indicated volume				
6.7.1.1	The indicating device shall include visual means for testing and calibration.				
6.7.1.1	The indicating device may include additional elements for testing and calibration by other methods, e.g. for automatic testing and calibration				
	Unit of measurement and its placement				
6.7.1.2	The indicated volume of water shall be expressed in cubic metres				
6.7.1.2	The symbol m^3 shall appear on the dial or immediately adjacent to the numbered display				
	Indicating range				
6.7.1.3	For $Q_3 \le 6.3$, the minimum indicating range is 0 m ³ to 9 999 m ³				
6.7.1.3	For 6,3 < $Q_3 \le 63$, the minimum indicating range is 0 m ³ to 99 999 m ³				
6.7.1.3	For $63 < Q_3 \le 630$, the minimum indicating range is 0 m^3 to $999 999 \text{ m}^3$				
6.7.1.3	For $630 < Q_3 \le 6300$, the minimum indicating range is 0 m^3 to 9999999 m^3				
	Colour coding for indicating device				
6.7.1.4	The colour black should be used to indicate the cubic metre and its multiples				
6.7.1.4	The colour red should be used to indicate sub-multiples of a cubic metre				
6.7.1.4	The colours shall be applied to either the pointers, indexes, numbers, wheels, discs, dials or aperture frames				
6.7.1.4	Other means of indicating the cubic metre may be used provided there is no ambiguity in distinguishing between the primary indication and alternative displays, e.g. submultiples for verification and testing				
	Types of indicating device: Type 1 — Analogue devic	e			

External examination for all water meters					
ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	_	Remarks	
6.7.2.1	The indicated volume shall be shown by continuous movement of either:				
	a) one or more pointers moving relative to graduated scales; or				
	b) one or more circular scales or drums each passing an index				
6.7.2.1	The value expressed in cubic metres for each scale division shall be of the form 10^n , where n is a positive or a negative whole number or zero, thereby establishing a system of consecutive decades.				
6.7.2.1	The scale shall be graduated in values expressed in cubic metres or accompanied by a multiplying factor				
	(×0,001; ×0,01; ×0,1; ×1; ×10; ×100; ×1 000 etc.)				
6.7.2.1	Rotational movement of the pointers or circular scales shall be clockwise				
6.7.2.1	Linear movement of pointers or scales shall be left to right				
6.7.2.1	Movement of numbered roller indicators shall be upwards				
	Types of indicating device: Type 2 — Digital device				
6.7.2.2	The indicated volume is given by a line of digits appearing in one or more apertures				
6.7.2.2	The advance of one digit shall be completed while the digit of the next immediately lower decade changes from 9 to 0				
6.7.2.2	The apparent height of the digits shall be at least 4 mm				
6.7.2.2	For non-electronic devices, movement of numbered roller indicators (drums) shall be upwards				
6.7.2.2	For non-electronic devices, the lowest value decade may have a continuous movement, the aperture being large enough to permit a digit to be read without ambiguity				
6.7.2.2	For electronic devices with non-permanent displays the volume shall be able to be displayed at any time for at least 10 s				
6.7.2.2	For electronic devices, the meter shall provide visual checking of the entire display which shall have the following sequence:				
	— for seven segment type displaying all the elements (e.g. an "eights" test); and				
	— for seven segment type blanking all the elements (a "blanks" test).				
	For graphical displays, an equivalent test is required to demonstrate that display faults cannot result in any digit being misinterpreted.				
	Each step of the sequence shall last at least 1 s				
Types of indicating device: Type 3 — Combination of analogue and digital devices					
6.7.2.3 The indicated volume is given by a combination of type 1 and type 2 devices and the respective requirements of each shall apply					
	Verification devices — General requirements				

	External examination for all water meters			
ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks
6.7.3.1	Every indicating device shall provide means for visual, non-ambiguous verification testing and calibration			
6.7.3.1	The visual verification may have either a continuous or a discontinuous movement			
6.7.3.1	In addition to the visual verification display, an indicating device may include provisions for rapid testing by the inclusion of complementary elements (e.g. star wheels or discs), providing signals through externally attached sensors.			
	Verification devices — Visual verification displays			
6.7.3.2.1	The value of the verification scale interval, expressed in cubic metres, shall be of the form: 1×10^n , 2×10^n or 5×10^n , where n is a positive or negative whole number, or zero			
6.7.3.2.1	The indicated volume is given by a line of digits appearing in one or more apertures			
6.7.3.2.1	For analogue or digital indicating devices with continuous movement of the first element, the verification scale interval may be formed from the division into 2, 5 or 10 equal parts of the interval between two consecutive digits of the first element. Numbering shall not be applied to these divisions			
6.7.3.2.1	For digital indicating devices with discontinuous movement of the first element, the verification scale interval is the interval between two consecutive digits or incremental movements of the first element			
6.7.3.2.2	On indicating devices with continuous movement of the first element, the apparent scale spacing shall be not less than 1 mm and not more than 5 mm			
6.7.3.2.2	The scale shall consist of either:			
	a) lines of equal thickness not exceeding one quarter of the scale spacing and differing only in length; or			
	b) contrasting bands of a constant width equal to the scale spacing			
6.7.3.2.2	The apparent width of the pointer at its tip shall not exceed one-quarter of the scale spacing and in no case shall it be greater than 0,5 mm			
	Resolution of the indicating device			
6.7.3.2.3	The sub-divisions of the verification scale shall be small enough to ensure that the resolution of the indicating device does not exceed 0,25 % of the actual volume for accuracy class 1 meters, and 0,5 % of the actual volume for accuracy class 2 meters, for a 90 min test at the minimum flow rate, Q_1 .			
	NOTE 1 When the display of the first element is continuous, an allowance should be made for a maximum error in each reading of not more than half of the verification scale interval.			
	NOTE 2 When the display of the first element is discontinuous, an allowance should be made for a maximum error in each reading of not more than one digit of the verification scale			

External examination for all water meters					
ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks	
NOTE For combinate devices.	ation meters with two indicating devices, the above requirement	nts	appl	y to both indicating	
	Marks and inscriptions				
6.6.1	A place shall be provided on the meter for affixing the verification mark, which shall be visible without dismantling the meter				
6.6.2	The water meter shall be clearly and indelibly marked with the information listed in the following, either grouped or distributed on the casing, the indicating device dial, an iden- tification plate or on the meter cover if is not detachable				
6.6.2 a)	Unit of measurement: cubic metre				
6.6.2 b)	The accuracy class, where it differs from accuracy class 2				
6.6.2 c)	The numerical value of Q_3 and the ratio Q_3/Q_1 (may be preceded by R). If the meter measures reverse flow and Q_3 and the ratio Q_3/Q_1 are different in the two directions, both values of Q_3 and Q_3/Q_1 shall be inscribed; the direction of flow to which each pair of values refers shall be clear. If the meter has different values of Q_3/Q_1 in horizontal and vertical positions, both values of Q_3/Q_1 shall be inscribed, and the orientation to which each value refers shall be clear				
6.6.2 d)	The type approval sign according to national regulations				
6.6.2 e)	The name or trademark of the manufacturer				
6.6.2 f)	The year of manufacture (or the last two digits of the year of manufacture or the month and year of manufacture)				
6.6.2 g)	The serial number (as near as possible to the indicating device)				
6.6.2 h)	The direction of flow (shown on both sides of the body; or on one side only, provided the direction of flow arrow is easily visible under all circumstances)				
6.6.2 i)	The maximum admissible pressure (MAP) if it exceeds 1 MPa (10 bar) or 0,6 MPa (6 bar) for nominal diameter ≥500 mm. (The unit bar may be used where national regulations per-				
6.6.2 j)	mit) The letter V or H, if the meter can only be operated in the vertical or horizontal position				
6.6.2 k)	The temperature class where it differs from T30				
6.6.2 l)	The pressure loss class where it differs from Δp 63				
6.6.2 m)	The installation sensitivity class where it differs from U0/D0				
	Additional markings for water meters with electronic de	vice	 ?S		
6.6.2 n)	For an external power supply: the voltage and frequency				
6.6.2 0)	For a replaceable battery: the latest date by which the battery shall be replaced				
6.6.2 p)	For a non-replaceable battery: the latest date by which the meter shall be replaced				
6.6.2 q)	Environmental classification				

ISO 4064-1:2014	Requirement	+	Remarks
OIML R 49-1:2013, subclause	Kequii ement	т	Kemarks
6.6.2 r)	Electromagnetic environmental class		
0.0.2.2	Protection devices		
6.8.1	Water meters shall include protection devices which can be sealed so as to prevent, both before and after correct installation of the water meter, dismantling or modification of the meter, its adjustment device or its correction device, without damaging these devices. In the case of combination meters, this requirement applies to both meters		
	Protection devices — Electronic sealing devices		
6.8.2.1	When access to parameters that influence the determination of the results of measurements is not protected by mechanical sealing devices, the protection shall fulfil the following provisions. a) Access shall only be allowed to authorized people, e.g. by means of a code (password) or of a special device		
	(hard key, etc.). The code shall be capable of being changed. b) It shall be possible for at least the last intervention to be memorized. The record shall include the date and a characteristic element identifying the authorized person making the intervention [see a)]. If it is possible to memorize		
	more than one intervention and if a previous intervention requires deletion to permit a new record, the oldest record shall be deleted		
6.8.2.2	For meters with parts which can be disconnected one from another by the user and which are interchangeable, the following provisions shall be fulfilled:		
	a) it shall not be possible to access parameters that participate in the determination of results of measurements through disconnected points unless the provisions of ISO 4064-1:2014 OIML R 49-1:2013, 6.8.2.1 are fulfilled;		
	b) interposing any device which may influence the accuracy shall be prevented by means of electronic and data processing securities or, if this is not possible, by mechanical means		
6.8.2.3	For meters with parts which may be disconnected one from the other by the user and which are not interchangeable, the provisions in ISO 4064-1:2014 OIML R 49-1:2013, 6.8.2.2 apply.		
	Moreover, these meters shall be provided with devices which do not allow them to operate if the various parts are not connected according to the approved type.		
	NOTE Disconnections which are not allowed to the user may be prevented, e.g. by means of a device that prevents any measurement after disconnecting and reconnecting		
	Examination and testing of checking facilities		

External examination for all water meters					
ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	_	Remarks	
5.1.3	Water meters with electronic devices shall be provided with the checking facilities specified in ISO 4064-1:2014 OIML R 49-1:2013, Annex B, except in the case of non-resettable measurements between two constant partners				
5.1.3	All meters equipped with checking facilities shall prevent or detect reverse flow, as laid down in ISO 4064-1:2014 OIML R 49-1:2013, 4.2.7.				

4.4.2 Checklist for water meter performance tests

4.4.2.1 Performance tests for all water meters

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks
	Static pressure test			
4.2.10	The meter shall be capable of withstanding the following test pressures without leakage or damage:			
	 1,6 times the maximum admissible pressure for 15 min; 			
	2 times the maximum admissible pressure for 1 min			
Intrinsic errors (of indication)				

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks	
7.2.3	The errors (of indication) of the water meter (in the measurement of the actual volume), shall be determined at least at the following flow rate ranges:				
	a) Q_1 to 1,1 Q_1 ;				
	b) Q_2 to 1,1 Q_2 ;				
	c) $0.33(Q_2 + Q_3)$ to $0.37(Q_2 + Q_3)$;				
	d) $0.67(Q_2 + Q_3)$ to $0.74(Q_2 + Q_3)$;				
	e) $0.9Q_3$ to Q_3 ;				
	f) $0.95Q_4$ to Q_4 ;				
	and for combination meters:;				
	g) $0.85Q_{x1}$ to $0.95Q_{x1}$;				
	h) $1,05Q_{x2}$ to $1,15Q_{x2}$.				
	The water meter should be tested without its temporary supplementary devices attached (if any).				
	During a test all other influence factors shall be held at reference conditions.				
	Other flow rates may be tested depending on the shape of the error curve.				
	1) The relative errors (of indication) observed for each of the flow rates shall not exceed the maximum permissible errors (MPEs) given in ISO 4064-1:2014 OIML R 49-1:2013, 4.2.2 or 4.2.3. If the error observed on one or more meters is greater than the MPE at one flow rate only, then if only two results have been taken at that flow rate, the test at that flow rate shall be repeated. The test shall be declared satisfactory if two out of the three results at that flow rate lie within the MPE and the arithmetic mean of the results for the three tests at that flow rate lies within the MPE.				
	2) If all the relative errors (of indication) of the water meter have the same sign, at least one of the errors shall not exceed one-half of the MPE. In all cases, this requirement shall be applied equitably with respect to the water supplier and the consumer (see also ISO 4064-1:2014 OIML R 49-1:2013, 4.3.3 3) and 8)				
7.2.4	The meter shall be repeatable: the standard deviation of three measurements at the same flow rate shall not exceed one-third of the MPEs given in ISO 4064-1:2014 OIML R 49-1:2013, 4.2.2 or 4.2.3. Tests shall be carried out at nominal flow rates of Q_1 , Q_2 , and Q_3				
Water temperature test					
4.2.8	The requirements relating to the MPEs shall be met for all water temperature variations within the rated operating conditions of the meter				
Water pressure test					
4.2.8	The requirements relating to the MPEs shall be met for all water pressure variations within the rated operating conditions of the meter				
	Reverse flow test				

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks
4.2.7	A water meter designed to measure reverse flow shall either:			
	a) subtract the reverse flow volume from the indicated volume; or			
	b) record the reverse flow volume separately.			
	The MPEs of ISO 4064-1:2014 OIML R 49-1:2013, 4.2.2 or 4.2.3 shall be met for both forward and reverse flow			
4.2.7	A water meter not designed to measure reverse flow shall either:			
	a) prevent it; or			
	b) be capable of withstanding an accidental reverse flow at a flow rate up to Q_3 without any deterioration or change in its metrological properties for forward flow			
	Meter characteristics at zero flow rate			
4.2.9	The water meter totalization shall not change when the flow rate is zero			
	Pressure loss test			
6.5	The pressure loss of the water meter, including its filter where the latter forms an integral part of the water meter, shall not be greater than 0,063 MPa (0,63 bar) between Q_1 and Q_3			
	Flow disturbance test			
6.3.4	If the accuracy of water meters is affected by disturbances in the upstream or downstream pipeline, the meter shall be provided with sufficient straight pipe lengths with or without a flow straightener (as specified by the manufacturer) so that the indications of the installed water meter do not exceed MPEs according to the accuracy class of the meter.			
	Forward flow tests			
	Reverse flow tests (where applicable)			
	Overload temperature test	,		
7.2.5	Water meters with MAT \geq 50 °C shall be capable of withstanding a water temperature of MAT + 10 °C for 1 h			
	Durability tests			
7.2.6	The water meter shall undergo a durability test according to the permanent flow rate Q_3 and the overload flow rate Q_4 of the meter, simulating service conditions			
7.2.6	Meters with $Q_3 \le 16 \text{ m}^3/\text{h}$:			
	a) $100\ 000\ \text{flow}$ cycles between 0 and Q_3 ;			
	b) 100 h at Q ₄			
7.2.6	Meters with $Q_3 > 16 \text{ m}^3/\text{h}$:			
	a) 800 h at Q_3 ;			
	b) 200 h at Q ₄ ;			
	and for combination meters:			
	c) 50 000 flow cycles between $Q \ge 2Q_{x2}$ and 0			

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks
7.2.6.2	Accuracy class 1 meters			
	The variation in the error curve shall not exceed 2 % for flow rates in the lower zone $(Q_1 \le Q < Q_2)$ and 1 % for flow rates in the upper zone $(Q_2 \le Q \le Q_4)$.			
	For the purpose of these requirements, the arithmetic mean value of the errors (of indication) \bar{E} for each flow rate shall apply.			
	For flow rates in the lower flow rate zone $(Q_1 \le Q < Q_2)$, the error (of indication) curve shall not exceed a maximum error limit of ± 4 % for all temperature classes. For flow rates in the upper flow rate zone $(Q_2 \le Q \le Q_4)$, the error (of indication) curve shall not exceed a maximum error limit of $\pm 1,5$ % for meters of temperature class T30 and $\pm 2,5$ % for all other temperature classes			
7.2.6.3	Accuracy class 2 meters			
	The variation in the error curve shall not exceed 3 % for flow rates in the lower zone $(Q_1 \le Q < Q_2)$ and 1,5 % for flow rates in the upper zone $(Q_2 \le Q < Q_4)$.			
	For the purpose of these requirements, the arithmetic mean value of the errors (of indication) \overline{E} for each flow rate shall apply.			
	For flow rates in the lower flow rate zone $(Q_1 \le Q < Q_2)$, the error (of indication) curve shall not exceed a maximum error limit of ± 6 % for all temperature classes. For flow rates in the upper flow rate zone $(Q_2 \le Q < Q_4)$ the error (of indication) curve shall not exceed a maximum error limit of $\pm 2,5$ % for meters of temperature class T30 and $\pm 3,5$ % for all other temperature classes			
7.2.7	It shall be demonstrated that cartridge meters and exchangeable metrological modules for water meters with exchangeable metrological modules are independent of the connection interfaces they are made for, as far as their metrological performance is concerned. The cartridge meters and exchangeable metrological modules shall be tested in accordance with the test specified in ISO 4064-2:2014 OIML R 49-2:2013, 7.4.6			
7.2.8	All water meters where the mechanical components may be influenced by a static magnetic field and all meters with electronic components shall be tested by applying a specified field.			
	The test shall be carried out at Q_3 and show that the indications of the installed water meter do not exceed MPEs of the upper zone according to the accuracy class of the meter:			
	Forward flow tests			
	Reverse flow tests (where applicable)			
	Application of the field in different planes			

4.4.2.2 Performance tests for electronic water meters and electronic devices fitted to mechanical meters (first version)

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks
	Dry heat			
A.5	To verify compliance with the provisions in 4.2 under conditions of high temperature (see ISO 4064-2:2014 OIML R 49-2:2013, 8.2)			
	Cold			

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks
A.5	To verify compliance with the provisions in 4.2 under conditions of low temperature			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.3)			
	Damp heat, cyclic, condensation			
A.5	To verify compliance with the provisions in 5.1.1 under conditions of high humidity when combined with cyclic temperature changes.			
	Cyclic tests shall be applied in all the cases where condensation is important or when the penetration of vapour is accelerated by the breathing effect.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.4)			
Por	wer voltage variation, for water meters powered by DC batterie.	s and	DC m	nains
A.5	To verify compliance with the provisions in 4.2 under conditions of varying DC voltage (if relevant).			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.5)			
	Replaceable battery			
5.2.4	To verify compliance with the provisions in 5.2.4.3. The properties and parameters of the meter shall not be affected by the interruption of the electrical supply when the battery is replaced			
Power	voltage variation, for water meters powered by direct AC or by	AC/L	C con	iverters
A.5	To verify compliance with the provisions in 4.2 under conditions of varying AC mains power voltage (if relevant).			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.5)			
	Vibration (random)			
A.5	To verify compliance with the provisions in 5.1.1 under conditions of random vibration.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.6)			
	Mechanical shock			
A.5	To verify compliance with the provisions in 5.1.1 under conditions of mechanical shocks.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.7)			
	Short time power reductions			
A.5	To verify compliance with the provisions in 5.1.1 under conditions of short time mains voltage reductions.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.8)			
	Bursts			1
A.5	To verify compliance with the provisions in 5.1.1 under conditions where electrical bursts are superimposed on input/out-put and communication ports.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.9)			
A.5	To verify compliance with the provisions in 5.1.1 under conditions where electrical bursts are superimposed on the mains voltage.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.10)			
	Electrostatic discharge	1	,	
A.5	To verify compliance with the provisions in 5.1.1 under conditions of direct and indirect electrostatic discharges.			
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.11)			

ISO 4064-1:2014 OIML R 49-1:2013, subclause	Requirement	+	-	Remarks							
	Electromagnetic susceptibility — electromagnetic fields										
A.5	To verify compliance with the provisions in 5.1.1 under conditions of radiated electromagnetic fields.										
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.12)										
A.5	To verify compliance with the provisions in 5.1.1 under conditions of conducted electromagnetic fields.										
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.13)										
	Surges on signal, data, and control lines										
A.5	To verify compliance with the provisions in 5.1.1 under conditions where electrical surges are superimposed on I/O and communication ports.										
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.14)										
	Surges on AC and DC mains power lines										
A.5	To verify compliance with the provisions in 5.1.1 under conditions where electrical surges are superimposed on the mains voltage.										
	(see ISO 4064-2:2014 OIML R 49-2:2013, 8.15)										

4.5 Type evaluation tests (for all water meters)

4.5.1 Static pressure test (ISO 4064-2:2014|OIML R 49-2:2013, 7.3)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

	Meter serial No.	MAP × 1,6	Start time	Initial pressure	End time	Final pres- sure	Remarks
		MPa (bar)		MPa (bar)		MPa (bar)	
Ì							

Meter serial No.	MAP × 2	Start time	Initial pressure	End time	Final pres- sure	Remarks
	MPa (bar)		MPa (bar)		MPa (bar)	

Comments:

4.5.2 Determination of changeover flow rates for combination meters (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.3)

		A + - + +	A + J	7
4 10 37		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			<u></u> %
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			
<u></u>				
Test method:		Grav	imetric/vo	olumetric
· · · · · · · · · · · · · · · · · · ·	ghbridge used — m³ or kg:			
	ectromagnetic induction meters only) — S/cm:			
	e before meter (or manifold) — mm:			
	e after meter (or manifold) — mm:			
	of pipe before and after meter (or manifold) — mm:			
Describe flow straight	ener installation if used:			
Increasing flow rate				
Flow rate immediately	γ before changeover, $Q_{ m a}$			
Flow rate immediately	v after changeover, $Q_{ m b}$			
Changeover flow rate,	$Q_{x2} = \frac{\left(Q_a + Q_b\right)}{2}$			
Decreasing flow rate				
Flow rate immediately	before changeover, $Q_{\rm c}$			
Flow rate immediately	v after changeover, Q _d			
Changeover flow rate,	$Q_{x1} = \frac{\left(Q_c + Q_d\right)}{2}$			
Comments:				
	on of the intrinsic errors (of indication) and the e DIML R 49-2:2013, 7.4.4)	ffects of n	neter ori	entation
		At start	At end]
Application No:	Ambient temperature:			°C
Model:	Ambient temperature Ambient relative humidity:			 %
			 	4
Date:	Ambient atmospheric pressure:		 	MPa
Observer:	Time:			

Test method:	:					Gra	vimetric/vol	umetric
Volume meas	sures/weighbri	idge used	— m ³ or kg:				·	
Water condu	ctivity (electro	magnetic	induction met	ers only) — S/	cm:			
Length of str	aight pipe befo	re meter	(or manifold) –	– mm:				
Length of str								
Nominal diar	neter DN of pip	e before a	and after meter	(or manifold)	— mm:			
Describe flow	v straightener	installatio	on if used:					
Actual flow-	Initial supply	Water	t 3): Loca	Final reading	Indicated	Actual	-	t 4):
rate	pressure	temp.			1	volume	Meter error	MPEa
	r	temp.			volume	Volume	Meter error	MPEa
$Q_{(\)}$	P	$T_{\rm W}$	$V_{\rm i}({ m i})$	V _i (f)	$V_{ m i}$	V_a	$E_{ m m}$	MPEa
$Q_{(\)}$ m $^3/\mathrm{h}$	MPa (bar)	1	V _i (i)	V _i (f)				MPE ^a %
	•	$T_{\rm W}$			$V_{ m i}$	$V_{\rm a}$	$E_{ m m}$	
	•	$T_{\rm W}$			$V_{ m i}$	$V_{\rm a}$	$E_{ m m}$	
	•	$T_{\rm W}$			$V_{ m i}$	$V_{\rm a}$	$E_{ m m}$	

 \bar{E}_{m3}

Meter serial No.:	Orientation	(V, H, other):	
-------------------	-------------	----------------	--

MPEa/3

%

Standard deviation

^a For a complete water this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2: 2013, 9.4). For acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5

b Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

c Calculate standard deviation if $Q = Q_1$, Q_2 or Q_3 (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

Flow direction (see Requirement 3): ____ Location of indicating device (see Requirement 4):___

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
$Q_{(\)}$		T_{W}	$V_{\rm i}({ m i})$	V _i (f)	V_{i}	$V_{\rm a}$	E_{m}	
m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
						\bar{E}_{m2}		
						\bar{E}_{m3}		
							Standard deviation	MPEa/3
							%	%
						sc		

^a For a complete water this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013$, $4.2.2\ or\ 4.2.3$ according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013$, 9.4). For acceptance criteria refer to ISO $4064-2:2014|OIML\ R\ 49-2:2013$, 7.4.5

Meter serial No.:	Orientation	(V. H	, other):
ricter seriar ron	Olichtation	,	, other ,

Flow direction (see Requirement 3): ___ Location of indicating device (see Requirement 4): ___

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
Q()		T_{W}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	V _a	$E_{ m m}$	
m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
					,	\bar{E}_{m2}		
						\bar{E}_{m3}		
							Standard deviation	MPEa/3
							%	%
						Sc		

^a For a complete water this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013,\ 4.2.2$ or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013,\ 9.4$). For acceptance criteria refer to ISO $4064-2:2014|OIML\ R\ 49-2:2013,\ 7.4.5$

Requirements

b Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

^c Calculate standard deviation if $Q = Q_1$, Q_2 or Q_3 (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

b Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

^c Calculate standard deviation if $Q = Q_1$, Q_2 or Q_3 (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

Requirement 1: shall be added.	Tables fo	r each fl	ow ra	te acco	rding	to ISO 4	064-2	:201	4 OIM	L R 49	9-2:2	2013, 7	7.4.4
Requirement 2: ISO 4064-2:2014 OIM	Tables L R 49-2:2			orienta shall b					be t mark			ified "H" or	in "V".
Requirement 3 If the f shall be given.	low axis is	s vertical	l, the f	low dir	ection	ı (from l	ootton	ı to t	op or	from	top t	o bott	om)
Requirement 4 If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.													
Comments:													
4.5.4 Interchange test on all types of cartridge meters and meters with logical modules (ISO 4064-1:2014 OIML R 49-1:2013, 7.2.7, ISO 4064-2:27.4.4, 7.4.6)											R 49		
Application No:				L	\mhier	ıt tempei	rature	At	start	ALE	IIu	°C	
Model:		_				ative hur						%	
Date:		_	Ar			heric pre	•					MPa	
Observer:		_	111	IIDICIIC G	itiiiosp	nerie pre	Time:					Ivii a	
Test method:								Grav	imetri	ic/vo	lumetr	ic	
Volume measures/weig													
Water conductivity (electromagnetic induction meters only) — S/cm:													
Length of straight pipe before meter (or manifold) — mm:													
Length of straight pipe after meter (or manifold) — mm:													
Nominal diameter DN o				ter (or n	nanifol	d) — mn	n:						
Describe flow straightener installation if used:													

Meter serial No.:_____ Orientation (V, H, other):_____

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
Q()		T_{W}	$V_{\rm i}({ m i})$	$V_{i}(f)$	$V_{\rm i}$	V _a	Em	
m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
						\bar{E}_{m2}		
						\bar{E}_{m3}		

^a For a complete water this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4). For acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5

The error variation (see ISO 4064-2:2014|OIML R 49-2:2013, 7.4.6.4) shall be checked

Meter serial No.	· :	Orientatio	on (v, H, otnerj:				
Flow direction ((see Req	uirement 3):	:	Location of indicat	ing device	(see Reg	uirement 4):

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
$Q_{(\)}$		T_{W}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	V _a	E_{m}	
m³/h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
						\bar{E}_{m2}		
						\bar{E}_{m3}		

^a For a complete water this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013$, $4.2.2\ or\ 4.2.3$ according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013$, 9.4). For acceptance criteria refer to ISO $4064-2:2014|OIML\ R\ 49-2:2013$, 7.4.5

The error variation (see ISO 4064-2:2014|OIML R 49-2:2013, 7.4.6.4) shall be checked

Meter serial No.:	Orientation ((V, H	, other):
-------------------	---------------	-------	---------	----

Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

b Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
Q()		T_{W}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	V _a	E_{m}	
m³/h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
						\bar{E}_{m2}		
						\bar{E}_{m3}		

^a For a complete water this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4). For acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5

The error variation (see ISO 4064-2:2014|OIML R 49-2:2013, 7.4.6.4) shall be checked

Requirements

Requirement 1: Tables for each flow rate according to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.4 shall be added.

Requirement 2: Tables for each orientation, which shall be as specified in ISO 4064-2:2014 OIML R 49-2:2013, 7.4.2.2.7.5 shall be provided for meters not marked either "H" or "V".

Requirement 3 If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 4 If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.5.5 Water temperature test (ISO 4064-2:2014|OIML R 49-2:2013, 7.5) and overload water temperature test (ISO 4064-2:2014|OIML R 49-2:2013, 7.6)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

b Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation (V, H, other)	:
Flow direction (see Requir	rement 1): Location	of indicating device (see Requirement 2):

Application conditions	Nomi- nal flow rate	Actual flow rate	Initial supply pressure	Initial inlet water tem- perature	Initial read- ing	Final read- ing	Indi- cated volume	Actual volume		MPEa
		$Q_{()}$			V _i (i)	V _i (f)	$V_{\rm i}$	$V_{\rm a}$	Em	
	m³/h	m³/h	MPa(bar)	°C	m³	m³	m³	m³	%	%
10 °Cb	Q_2									
30 °Cc	Q_2									
MAT	Q_2									
Referenced	Q_2									
Comments:										

^a For a complete water meter, this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

- b Applicable to temperature classes T30 to T180.
- c Applicable to temperature classes T30/70 to T30/180.
- d Applicable to meters with an MAT ≥50 °C. After exposing the meter to a flow of water at a temperature of MAT +10 °C ± 2,5 °C for a period of 1 h after the meter has reached temperature stability; and after recovery, the meter functionality with regard to volume totalization shall remain unaffected; additional functionality, as indicated by the manufacturer, shall remain unaffected; the error (of indication) of the meter shall not exceed the applicable MPE.

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.5.6 Water pressure test (ISO 4064-2:2014|OIML R 49-2:2013, 7.7)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation (V, H, other):
-------------------	----------------------------

Application conditions	Nominal flow rate	Actual flow rate	Initial supply pressure	Initial inlet water tempera-	Initial read- ing	Final read- ing	Indicated volume	Actual volume		
				ture	*** 613	****			_	
		$Q_{()}$			$V_{\rm i}({\rm i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	$V_{\rm a}$	$E_{\rm m}$	
	m ³ /h	m ³ /h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%
0,03 MPa	Q_2									
(0,3 bar)										
MAP	Q_2									
Comments:										

^a For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.1 or 4.2.2 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.5.7 Reverse flow test (ISO 4064-2:2014|OIML R 49-2:2013, 7.8)

4.5.7.1 General

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

4.5.7.2 Meters designed to measure accidental reverse flow (ISO 4064-2:2014|OIML R 49-2:2013, 7.8.3.1)

Meter serial No.:	Orientation (V, H, oth	er):	
Flow direction (see Requi	rement 1): Locati	ion of indicating device (see Requirement	t 2): _

Application conditions	Nominal flow rate	Actual flow rate	Initial supply pressure	Initial inlet water tem- perature	Initial read- ing	Final read- ing	Indicated volume	Actual volume	1	
					V _i (i)	$V_{\rm i}({ m f})$	V_i	V _a	Em	
	m³/h	m³/h	MPa(bar)	°C	m ³	m^3	m ³	m ³	%	%
Reverse flow	Q_1									
Reverse flow	Q_2									
Reverse flow	Q_3									
Comments:										

 $^{^{\}rm a}$ For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

4.5.7.3 Meters not designed to measure accidental reverse flow (ISO 4064-2:2014|OIML~R~49-2:2013, 7.8.3.2)

Meter serial No.:	Orientation (V, F	I, other):	
Flow direction (see Requir	rement 1): Lo	ocation of indicating dev	vice (see Requirement 2):

Application conditions	Nominal flow rate	Actual flow rate	Initial supply pressure	Initial inlet water tem- perature	Initial read- ing	Final read- ing	Indicated volume	Actual volume	Meter error	
		$Q_{()}$			V _i (i)	$V_{\rm i}({\rm f})$	$V_{\rm i}$	V _a	Em	
	m³/h	m³/h	MPa(bar)	°C	m ³	m^3	m ³	m ³	%	%
reverse flow	0,9 Q ₃									
forward flow	Q_1									
forward flow	Q_2									
forward flow	Q_3									

Comments:

^a For a complete water meter, this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013$, $4.2.2\ or\ 4.2.3\ according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO <math>4064-2:2014|OIML\ R\ 49-2:2013$, 9.4).

Meter serial No.:	_ Orientati	on (V,	H, othe	r):						
Flow direction (see Requ	irement 1)	: l	Location	of indicat	ing dev	vice (s	ee Requi	iremei	nt 2):	
Application conditions	Nomina flow rate	l Actual flow rate	Initial supply pressure	Initial inlet water tem- perature	Initial read- ing	Final read- ing	Indicated volume	Actual volume		MPEa
					V _i (i)	$V_{\rm i}({\rm f})$	$V_{\rm i}$	V _a	Em	
	m ³ /h	m ³ /h	Mpa(bar)	°C	m ³	m ³	m ³	m ³	%	%
MAP at reverse flow	0						_	_	_	_
forward flow	<i>Q</i> ₁									
forward flow	Q ₂									
forward flow	Q_3									
Comments:										
a For a complete water meter, the according to the accuracy class of (ISO 4064-2:2014 OIML R 49-2:201	the meter. If t	num per the EUT	missible er is a separa	ror as defined able sub-assem	in ISO 406 bly, the M	64-1:201 [PE shall	4 OIML R 49 be defined	9-1:2013, by the	4.2.2 o nanufa	r 4.2.3 cturer
bottom) shall be given.		s is ho	orizontal tion of t	and the m	neter ha	s an i	ndicating	g devic	e wh	ich is
						At	start	At end		
Application No:				Ambient ten	nperatur	e:			°C	
Model:				ient relative	-				%	
Date:				atmospheric	•				MPa	
		•	Ambient	atinospheric	•				MIFA	
Observer:					Tim	e:]	
Meter serial No.:	_ Orientati	on (V,	H, othe	r):						
Flow direction (see Requ	irement 1)	: l	Location	of indicat	ing dev	vice (s	ee Requi	iremei	nt 2):	
Measurement 1										
Flow rate L_1 L	L_3	L_4	Initia	al supply	Water	temp.	Measuri	ng Pro	essure	loss
$Q_{()}$				essure		-	section		Δp_1	

°C

mm

4.5.7.4 Meters which prevent reverse flow (ISO 4064-2:2014|OIML R 49-2:2013, 7.8.3.3)

MPa (bar)

 m^3/h

mm

mm

mm

mm

MPa (bar)

Measurement 2

Flow rate $Q_{()}$	L_1	L ₂	<i>L</i> ₃	L_4	Initial supply pressure	Water temp.	Measuring section	Pressure loss Δp_2	Meter pressure loss Δp
m³/h	mm	mm	mm	mm	MPa (bar)	°C mm		MPa (bar)	MPa (bar)
Comments:							_		

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.5.9 Flow disturbance tests (ISO 4064-2:2014|OIML R 49-2:2013, 7.10, Annex C)

		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Installation arrangement (see ISO 4064-2:2014|OIML R 49-2:2013, Annex C) — for each test applied, insert the actual pipe dimensions used (as stated by the meter manufacturer):

Test	Flow-disturber type (location)	Flow-	Installation dimensions (see key to Figure 1)									
No.		straightener installed	mm									
		mstaneu	L_1	L_2	L ₃	L_4	L_5	L_6	L_7			
1	1 (upstream)	no	_			_	_	_	_			
1A	1 (upstream)	yes	_			_		_				
2	1 (downstream)	no		_	_		_	_	_			
2A	1 (downstream)	yes		_	_		_					
3	2 (upstream)	no	_			_	_	_	_			
3A	2 (upstream)	yes	_			_		_				
4	2 (downstream)	no		_	_		_	_	_			
4A	2 (downstream)	yes		_	_		_					
5	3 (upstream)	no	_			_	_	_	_			
5A	3 (upstream)	yes	_			_		_				
6	3 (downstream)	no		_	_		_	_	_			
6A	3 (downstream)	yes		_	_		_					
Comn	nents:											

Direction of flow: forw	vard / reverse
Meter serial No.:	Orientation (V, H, other):

Test No.	Actual flow rate $Q_{()}$	Pressure p_{W}	Water temp $T_{ m W}$	Initial reading $V_{ m i}({ m i})$	Final reading $V_{i}(f)$	Indicated volume $V_{ m i}$	Actual volume $V_{ m a}$	Meter error $E_{ m m}$	MPEa
	m³/h	MPa (bar)	°C	m^3	m ³	m ³	m^3	%	%
1									
1A									
2									
2A									
3									
3A									
4									
4A									
5									
5A									
6									
6A									

Comments:

For meters where the manufacturer has specified installation lengths of at least $15 \times DN$ upstream and $5 \times DN$ downstream of the meter, no external straighteners are allowed.

When a minimum straight pipe length (L_2), of 5 × DN downstream of the meter is specified by the manufacturer, only tests numbers 1, 3 and 5 are required.

Requirements

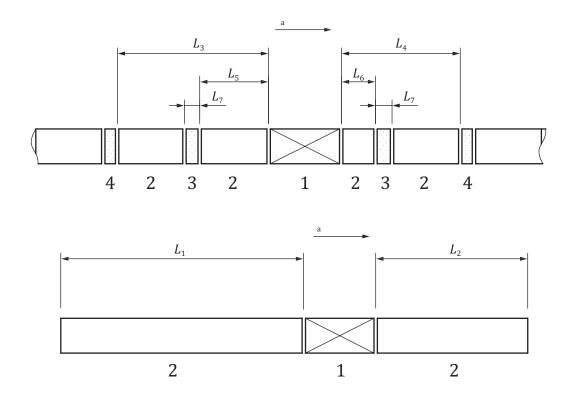
Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

^a For a complete water meter, this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

1

2


3

water meter

straight pipe

flow straightener

flow disturber

Kev

- L_1 straight inlet pipe length, without flow-disturber or flow-straightener
- L_2 straight outlet pipe length, without flow-disturber or flow-straightener
- L₃ length between outlet of upstream flow-disturber and inlet of meter (or manifold)
- L_4 length between outlet of meter (or manifold) and inlet of downstream flow-disturber 4
- L_5 length between outlet of upstream flow-straightener and inlet of meter (or manifold)
- L₆ length between outlet of meter (or manifold) and inlet of downstream flowstraightener
- L₇ flow-straightener length
- a Flow.

Figure 1 — Key to relative positions

4.5.10 Durability tests (ISO 4064-2:2014|OIML R 49-2:2013, 7.11)

4.5.10.1 Discontinuous flow test (ISO 4064-2:2014|OIML R 49-2:2013, 7.11.2)

This test is applicable only to meters with values of $Q_3 \le 16 \text{ m}^3/\text{h}$.

Application No.	
Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Readings	taken	during	the	test
----------	-------	--------	-----	------

NOTE Readings are recorded every 24 h or once for every shorter period, if so divided.

Ambient conditions at start

Ambient temperature	Ambient relative humidity	Ambient atmospheric pressure	Time
°C	%	MPa (bar)	

Date	Time	Observer	Up	Down	Up	Actual	Meter	F	low cycl	e times -	s	Total	Total no.
			stream	stream	stream	flowrate	reading					volume	of flow
			pressure	pressure	temp.							discharged	cycles
			MPa (bar)	MPa (bar)	°C	m³/h	m ³	rise	on	fall	off	m ³	
								Totals a	t end of	test =			
					,			Theore	tical tota	al a =			

^a Minimum theoretical volume passed during the test is $0.5 \times Q3 \times 100~000 \times 32$ / 3600 expressed in m3. Minimum number of test cycles during the test = 100~000.

Ambient conditions at finish

Ambient temperature	Ambient relative humidity	Ambient atmospheric pressure	Time
°C	%	MPa (bar)	

Observe	r:			Date:						
Errors (of indicati	on) meas	sured aft	er the d	iscontinuo	ous flow	test			
Meter so	erial No.:_									
Actual	Working	Working	Initial	Final	Indicated	Actual	Meter	MPEa	Curve	MPE
flowrate	pressure	temp	reading	reading	volume	volume	error		variation	(of curve
									error ^b	variation
										error) ^c
$Q_{()}$	p_{W}	T_{W}	$V_{\rm i}({ m i})$	V _i (f)	$V_{\rm i}$	V _a	Em		$\bar{E}_{ m m}({ m B})$ - $\bar{E}_{ m m}({ m A})$	
m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%
									_	_

 \bar{E}_{m2} \bar{E}_{m3} $\bar{E}_{m}(B)$

4.5.10.2 Continuous flow test (ISO 4064-2:2014|OIML R 49-2:2013, 7.11.3)

Application No.:	
Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Readings	taken	during	the	test
----------	-------	--------	-----	------

leter serial No.:

Comments:

NOTE Readings are recorded every 24 h or once for every shorter period, if so divided.

a For MPE values refer to ISO 4064-1:2014|OIML R 49-1:2013, 4.2. For acceptance criteria, refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5

 $[\]bar{E}_m(A)$ is the mean intrinsic error (of indication) – see test report 5.3; $\bar{E}_m(B)$ is the mean error (of indication) measured after this discontinuous flow test

^c For MPE values and acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2, 7.11.2.4.

d Perform a third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2, 7.4.5)

Ambient conditions at start

Ambient temperature	Ambient relative humidity	Ambient atmospheric pressure	Time
°C	%	MPa (bar)	

Date	Time	Observer	Up stream pressure	Down stream pressure	Up stream temp	Actual flowrate	Meter reading	Total vol- ume dis- charged	Hours run
			MPa (bar)	MPa (bar)	°C	m ³ /h	m ³	m ³	h
				Totals at end	of test =				
					Minimum vol	ume dischar	ged a =		

Cor	 	L

For meters with $Q_3 > 16 \text{ m}^3/\text{h}$, total hours run = 800 h at Q_3 (minimum volume discharged at end of test is $[Q_3] \times 800$, expressed in m³, where $[Q_3]$ is the number equal to the value of Q_3 , expressed in m³/h) and 200 h at Q_4 (minimum volume discharged at end of test is $[Q_4] \times 200$, expressed in m³) where $[Q_4]$ is the number equal to the value of Q_4 , expressed in m³/h).

Ambient conditions at finish

Ambient temperature	Ambient relative humidity	Ambient atmospheric pressure	Time
°C	%	MPa (bar)	

Observer:	Date:
ODSCI VCI.	Date.

Errors (of indication) measured after the continuous flow test

For meters with $Q_3 \le 16$ m³/h, total hours run = 100 h at Q_4 (minimum volume discharged at end of test is $[Q_4] \times 100$, expressed in m³, where $[Q_4]$ is the number equal to the value of Q_4 , expressed in m³/h)

Meter serial No.:_____

Actual	Working	Working	Initial	Final	Indicated	Actual	Meter	MPEa	Curve	MPE
flowrate	pres-	temp	reading	reading	volume	volume	error		variation	(of curve
	sure								error ^b	variation
										error) ^c
$Q_{()}$	p_{W}	T_{W}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	$V_{\rm a}$	E _m		$\bar{E}_{ m m}({ m B})$ - $\bar{E}_{ m m}({ m A})$	
m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%
									_	_
d										_
						\bar{E}_{m2}				
						$\bar{E}_{ m m3}$				
						$\bar{E}_{ m m}({ m B})$				

Comments:	Со	m	m	en	ıts:
-----------	----	---	---	----	------

4.5.10.3 Discontinuous flow test (ISO 4064-2:2014|OIML R 49-2:2013, 7.11.2)

(Applicable only to combination meters)

Application No.	
Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	
Specified changeover flow rate $Q_{ m x2}$	
Selected test flow rate (minimum is twice the changeover flow rate Q_{x2})	

Readings taken during the test

Meter seria	d No.:
-------------	--------

NOTE Readings are recorded every 24 h or once for every shorter period, if so divided.

 $^{^{\}rm a}$ For MPE values refer to ISO 4064-1:2014|OIML R 49-1:2013, 4.2. For acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5.

 $[\]bar{E}_{m}(A)$ is the Mean intrinsic error (of indication). See test report 5.3. $\bar{E}_{m}(B)$ is the mean error (of indication) measured after this continuous flow test (= either \bar{E}_{m2} or \bar{E}_{m3}).

For MPE values and acceptance criteria refer to ISO 4064-2:2014 OIML R 49-2:2013, 7.11.3.4.

d Perform third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

Ambient conditions at start

Ambient temperature	Ambient relative humidity	Ambient atmospheric pressure	Time
°C	%	MPa (bar)	

Date	Time	Observer	Up stream pressure	Down stream pres- sure	Up stream temp	Actual flowrate	Meter read- ing	Flow cycle times - s			S - S	Total volume dis- charged	Total no. of flow cycles
			MPa (bar)	MPa (bar)	°C	m³/h	m ³	rise	on	fall	off	m ³	
								Total	s at er	nd of te	est =		
									retica	l total	a =		

Minimum theoretical volume passed by meters during the test is $0.5 \times Q_1 \times 50000 \times 32 / 3600$ expressed in m³. Minimum number of test cycles during the test = 50000.

Ambient conditions at finish

Ambient temperature	Ambient relative humidity	Ambient atmospheric pressure	Time
°C	%	MPa (bar)	

Errors (of indication) measured aft	ter the discontinuous flow test
Observer:	Date:
Comments:	

flowrate pressure	Working	Initial	Final	Indicated	Actual	Meter	MPEa	Cı	urve	MP
*	temp	reading	reading	volume	volume	error		var	iation	(of cu
								er	ror ^b	variat
										error
$Q_{()}$ p_{w}	$T_{ m w}$	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	$V_{\rm a}$	E _m		$\bar{E}_{\mathrm{m}}(\mathrm{B})$) - $\bar{E}_{\mathrm{m}}(\mathrm{A})$	
m ³ /h MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%		%	%
									_	_
									_	_
					Ē _{m2}					
					Ē _{m3}					
					Ē _m (B)					
$ar{\it E}_{ m m}({\sf A})$ is the M fter this discontinuou	ean intrinsi s flow test (c error (of i = either $ar{E}_{ m m}$	ndication). \bar{E}_{m3}).	See test repo	ort 5.3. Ē _m (B) is the	mean er	ror (of i		
$ar{E}_{m}(A)$ is the M fter this discontinuou For MPE values an Perform third tes 49-2:2013, 7.4.5).	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_2$ or $ar{E}_{m3}$). efer to ISO $_4$	Seetestrepo 4064-2:2014 first or seco	ort 5.3. $ar{E}_{ m m}$ ($ $ OIML R 4 $ $ Ond test is	B) is the : 9-2:2013 s outside	mean er , 7.11.3.4 e the M	ror(ofi 4. PE (ISC	ndication	n) meas
$ar{E}_{m}(A)$ is the M fter this discontinuou For MPE values an Perform third tes 49-2:2013, 7.4.5).	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_2$ or $ar{E}_{m3}$). efer to ISO $_4$	Seetestrepo 4064-2:2014 first or seco	ort 5.3. $ar{E}_{ m m}$ ($ $ OIML R 4 $ $ Ond test is	B) is the : 9-2:2013 s outside	mean er , 7.11.3.4 e the M	ror (of i 4. PE (ISC 8.16)	ndication) 4064-2	ı) meası
$ar{E}_{ m m}({ m A})$ is the M fter this discontinuou For MPE values an Perform third test 49-2:2013, 7.4.5).	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_2$ or $ar{E}_{m3}$). efer to ISO $_4$	See test repo 4064-2:2014 first or second :2014 OIM	ort 5.3. $\bar{E}_{ m m}$ (OIML R 4 ond test is	B) is the post of	mean er , 7.11.3.4 e the M	ror (of i 4. PE (ISC 8.16)	ndication	:2014 0
$\bar{E}_{m}(A)$ is the M fter this discontinuou For MPE values an Perform third test 49-2:2013, 7.4.5).	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_2$ or $ar{E}_{m3}$). efer to ISO $_4$	See test report 4064-2:2014 first or secons 2014 OIM	ort 5.3. \bar{E}_{m} (F)OIML R 4 ond test is ML R 49-ent tempe	B) is the in the	mean er , 7.11.3.4 e the M	ror (of i 4. PE (ISC 8.16)	ndication) 4064-2	°C
$\bar{E}_{\rm m}(A)$ is the M fter this discontinuous. For MPE values an Perform third test 49-2:2013, 7.4.5). .5.11 Static mag . Application No: Model:	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_{12}$ or \bar{E}_{m3}). efer to ISO $_{4}$ or if the $_{1}$	See test report 4064-2:2014 first or second 2014 OIM Ambie Ambient r	ort 5.3. \bar{E}_{m} (F)OIML R 4 ond test is with the multiple of the multiple o	B) is the post of	mean er , 7.11.3.4 e the M	ror (of i 4. PE (ISC 8.16)	ndication) 4064-2	°C %
$\bar{E}_{\rm m}(A)$ is the M fter this discontinuous. For MPE values an Perform third test 449-2:2013, 7.4.5). .5.11 Static mag Application No: Model: Date:	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_{12}$ or \bar{E}_{m3}). efer to ISO $_{4}$ or if the $_{1}$	See test report 4064-2:2014 first or secons 2014 OIM	ort 5.3. \bar{E}_{m} (F)OIML R 4 ond test is with the multiple of the multiple o	B) is the second so the second	mean er , 7.11.3.4 e the M	ror (of i 4. PE (ISC 8.16)	ndication) 4064-2	°C
$\bar{E}_{\mathrm{m}}(A)$ is the M fter this discontinuous For MPE values an Perform third tes 49 -2:2013, 7 .4.5). 5.11 Static mag e Application No: Model:	ean intrinsi s flow test (d acceptanc t if $Q=Q_1$	c error (of in $=$ either \bar{E}_{m} e criteria region, Q_2 or Q_3	ndication). $_{12}$ or \bar{E}_{m3}). efer to ISO $_{4}$ or if the $_{1}$	See test report 4064-2:2014 first or second 2014 OIM Ambie Ambient r	ort 5.3. \bar{E}_{m} (F)OIML R 4 ond test is with the multiple of the multiple o	B) is the post of	mean er , 7.11.3.4 e the M	ror (of i 4. PE (ISC 8.16)	ndication) 4064-2	°C %

	•
Volume measures/weighbridge used — m ³ or kg::	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation (V, H, other):
-------------------	----------------------------

Application conditions	Nominal flow rate	Actual flow rate	Initial supply pressure	Initial inlet water tempera- ture	Initial reading $V_{\rm i}({ m i})$	Final reading $V_{\rm i}({ m f})$	Indicated volume $V_{ m i}$	Actual volume V _a	Meter error $E_{\rm m}$	MPEa
	m³/h	m ³ /h	MPa (bar)	°C	m ³	m ³	m^3	m ³	%	%
Location 1	Q_3									
Location 2 (optional)	Q_3									
Location 3 (optional)	Q_3									

Comments: Note location of magnet

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.5.12 Tests on ancillary devices of a water meter (ISO 4064-2:2014|OIML R 49-2:2013, 7.13)

		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Ovientation	(X/ II	other):
weter seriai no.:	- Orientation i	I V. H.	otneri:
		,,	

^a For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
$Q_{()}$		T_{w}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	V_{i}	$V_{\rm a}$	$E_{ m m}$	
m ³ /h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
						\bar{E}_{m2}		
						$\bar{E}_{\mathrm{m}3}$		
							Standard deviation	MPE/3a
							%	%
						s cd		

^a For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4). For acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5.

Meter serial No.: Orientation	(V, H, other):
-------------------------------	----------------

b Perform third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5).

c Calculate standard deviation if $Q = Q_1$, Q_2 or Q_3 (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

d Standard deviation of three measurements of the error (of indication) taken at the same nominal flowrate

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
$Q_{()}$		T_{W}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	$V_{\rm a}$	$E_{ m m}$	
m³/h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
	1					\bar{E}_{m2}		
						$\bar{E}_{\mathrm{m}3}$		
							Standard deviation	MPE/3a
							%	%
						s c d		

For a complete water meter this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013, 4.2.2$ or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013, 9.4$). For acceptance criteria refer to ISO $4064-2:2014|OIML\ R\ 49-2:2013, 7.4.5$.

Meter serial No.:	Orientation ((V, H,	other):
-------------------	---------------	--------	-------	----

Perform third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5).

Calculate standard deviation if $Q = Q_1$, Q_2 or Q_3 (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)

d Standard deviation of three measurements of the error (of indication) taken at the same nominal flowrate.

Actual	Initial	Water	Initial	Final	Indicated	Actual	Meter	MPEa
flowrate	supply	temp.	reading	reading	volume	volume	error	
	pressure							
Q ₍₎		T_{W}	$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	$V_{\rm i}$	$V_{\rm a}$	$E_{ m m}$	
m³/h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%
b								
		,				\bar{E}_{m2}		
						\bar{E}_{m3}		
							Standard deviation	MPE/3a
							%	%
						s cd		

^a For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable sub-assembly the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4). For acceptance criteria refer to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5.

- c Calculate standard deviation if $Q = Q_1$, Q_2 or Q_3 (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5)
- d Standard deviation of three measurements of the error (of indication) taken at the same nominal flowrate.

Requirements

Requirement 1: Tables for each flow rate according to ISO 4064-2:2014|OIML R 49-2:2013, 7.4.4 shall be added.

Requirement 2: Tables for each orientation, which shall be as specified in ISO 4064-2:2014|OIML R 49-2:2013, 7.4.2.2.7.5 shall be provided for meters not marked either 'H' or 'V'.

Requirement 3: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 4: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

Comments:

4.6 Type evaluation tests (for electronic water meters and mechanical water meters with electronic components)

4.6.1 Dry heat (non-condensing) (ISO 4064-2:2014|OIML R 49-2:2013, 8.2)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

b Perform third test if $Q = Q_1$, Q_2 or Q_3 or if the first or second test is outside the MPE (ISO 4064-2:2014|OIML R 49-2:2013, 7.4.5).

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation (V, H, other):	
Flow direction (see	Requirement 1):	Location of indicating device ((see Requirement 2):

Application conditions	Actual or simulated	Working pressure ^a	Working tem- perature ^a	Initial reading	Final reading	Indicated volume	Actual volume	Meter error	MPEb
	flow rate	p_{W}	$T_{ m W}$	$V_i(i)$	$V_i(j)$	$V_{\rm i}$	$V_{\rm a}$	$E_{\rm m}$	
	m³/h	MPa (bar)	°C	m ³	m ³	m^3	m ³	%	%
20 °C									
55 °C									
20 °C									

Comments:

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.2 Cold (ISO 4064-2:2014|OIML R 49-2:2013, 8.3)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

Temperature and pressure shall be recorded using a data-logging device to ensure conformity with the relevant IEC standard.

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Environmental class:				
Meter serial No.:	Orientation (V, H, other):			
Flow direction (see Requirement 1): Location of indicating device (see Requirement 2):				

Application conditions	Actual or simulated flow rate	Working pressure ^a	Working temperature ^a	Initial read- ing	Final read- ing	Indicated volume	Actual volume	Meter error	MPEb
		p_{W}	$T_{ m W}$	$V_i(i)$	$V_i(j)$	$V_{\rm i}$	V _a	Em	
	m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%
20 °C									
+5 °C or -25 °C									
20 °C									

Comments:

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.3 Damp heat, cyclic (condensing) (ISO 4064-2:2014|OIML R 49-2:2013, 8.4)

			At start	At end	
Application No:	Ambient ter	nperature:			°C
Model:	Ambient relative	humidity:			%
Date:	Ambient atmospheric	pressure:			MPa
Observer:	·	Time:			

^a Temperature and pressure shall be recorded using a data-logging device to ensure conformity with the relevant IEC standard.

b For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Environmental class:				
Meter serial No.:	Orientation (V, H, other):			
Flow direction (see Require	ement 1): Location of indicating device (see Requirement 2):			

Application conditions	Actual or simulated flow rate	Working pres- sure	Working tempera- ture ^a	Initial reading	Final read- ing	Indi- cated vol- ume	Actual vol- ume	Meter error	MPEb	Fault	Signifi- cant fault	EU' functi ing corre	ion- g
	$Q_{()}$	p_{W}	T_{W}	$V_i(i)$	<i>V_i</i> (j)	$V_{\rm i}$	V _a	$E_{\rm m}$		E _{m2)} - E _{m1)}			
	m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
Reference conditions													
1) Before cycling										_	_	_	_
Precondition meter.	Precondition meter.												
Apply damp heat cycles and M).	(duration 24 l	n), two cyc	les between	25 °C and	40 °C (e	nvironn	nental cl	ass B) or !	55 °C (e	nvironi	mental cl	asses 0	١
2) After cycling												ves	no

Comments:

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

Temperature and pressure shall be recorded using a data-logging device to ensure conformity with the relevant IEC standard.

b For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

4.6.4 Power supply variation (ISO 4064-2:2014|OIML R 49-2:2013, 8.5)

4.6.4.1 General

			At start	At end			
Application No:		Ambient temperature:			°C		
Model:		Ambient relative humidity:			%		
Date:		Ambient atmospheric pressure:			MPa		
Observer:		Time:					
Test method: Gravimetric/volumetric							
Volume measures/weighbridge used — m³ or kg:							
Water conductivity (electromagnetic induction meters only) — S/cm:							
Length of straight pi	pe before me	eter (or manifold) — mm:					
Length of straight pi	pe after met	er (or manifold) — mm:					
Nominal diameter D	N of pipe bef	ore and after meter (or manifold) — mm	:				
Describe flow straig	htener instal	lation if used:					
4.6.4.2 Meters powered by direct AC (single phase) or AC/DC converters, mains power supply (ISO 4064-2:2014 OIML R 49-2:2013, 8.5.2)							
Meter serial No.: Orientation (V, H, other):							
Flow direction (see Requirement 1): Location of indicating device (see Requirement 2):							

Application conditions	$U_{\rm i}$	Actual or simulated flow rate	Working pressure $p_{ m W}$	Working temperature	Initial read-	Final read-	Indicated volume	Actual volume		MPEa
(single volt- age)			r "	T_{W}	ing $V_i(i)$	ing $V_i(j)$	$V_{\rm i}$	V _a	E _m	
	V	m³/h	MPa (bar)	°C	m^3	m³	m ³	m ³	%	%
U _{nom} + 10 %										
f _{nom} + 2 %										
U _{nom} - 15 %										
f _{nom} – 2 %										

Comments:

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML~R~49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML~R49-2:2013, 9.4).

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.										
4.6.4.3 Meters powered by primary batteries or by external DC voltage (ISO 4064-2:2014 OIML R 49-2:2013, 8.5.3)										
Meter serial No.: Orientation (V, H, other):										
Flow direction	ı (se	ee Requirem	nent 1):	Location of	indicati	ng devic	e (see Req	uireme	nt 2):_	
Application conditions (single voltage)	Ui	Actual or simulated flow rate	Working pressure $p_{\rm W}$	Working temperature $T_{ m W}$	Initial reading $V_i(i)$	Final reading $V_i(j)$	Indicated volume $V_{\rm i}$	Actual volume	Meter error E _m	MPEa
	V	m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%
$U_{ m max}$										
U_{\min}										
Comments:										
a For a comple 1:2013, 4.2.2 or 4 MPE shall be defi	1.2.3	according to t	he accuracy		ter. If the	EUT is a s	eparable pa			
Requirement 1: bottom) shall b Requirement 2: integral with th meter) shall be 4.6.5 Vibrati	e give	If the floody of the men.	ow axis is eter, the lo	ecation of the	nd the m indicatin R 49-2: 2	eter has	an indica (at the sid	ting dev	ice wh	ich is
Model:				Ambien	t relative	humidity:			%	
Date:				Ambient atm	ospheric	pressure:			MPa	ì
Observer:			_			Time:				
Test method:							Grav	imetric/v	olumet	ric
Volume measures/weighbridge used — m ³ or kg:										
Water conductiv	ity ((electromagn	etic inducti	on meters only) — S/cm:	:				
Length of straight pipe before meter (or manifold) — mm:										
Length of straight pipe after meter (or manifold) — mm:										
Nominal diameter DN of pipe before and after meter (or manifold) — mm:										
Describe flow st	raig	htener install	ation if use	d:						
Environmenta Meter serial N				n (V, H, othei	·):					

Application conditions	Actual or simulated flow rate	Working pressure	Working tempera- ture	Initial read- ing	Final read- ing	Indi- cated volume	Actual vol- ume	Meter error	MPEa	Fault	Sig- nifi- cant fault	EU funct in corre	ion- g
	$Q_{()}$	p_{W}	T_{W}	$V_i(i)$	$V_i(j)$	$V_{\rm i}$	V _a	Em		E _{m2)} - E _{m1)}			
	m³/h	MPa (bar)	°C	m ³	m^3	m ³	m ³	%	%	%	%		
Reference condi-													
tions 1) Before vibra- tions										_	_	_	_
Apply random vibralleast 2 min per axis.												od of a	t
2) After vibrations												yes	no
Comments:		,	,					•					
^a For a complet 4.2.2 or 4.2.3 acco defined by the ma		iracy class o	of the meter.	. If the	EUT is								

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.6 Mechanical shock (ISO 4064-2:2014|OIML R 49-2:2013, 8.7)

			At start	At end	
Application No:		Ambient temperature:			°C
Model:		Ambient relative humidity:			%
Date:	Aı	mbient atmospheric pressure:			MPa
Observer:		Time:			
					•

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Environmental class:	
Meter serial No.:	Orientation (V, H, other):

Application conditions	Actual or simulated flow rate		Working tempera- ture	Initial read- ing	Final read- ing	Indicated volume	Actual volume	Meter error	MPEa	Fault	Sig- nificant fault	EUT func- tioning correctly
	Q()	p_{W}	T_{W}	$V_i(i)$	$V_i(j)$	V_i	V _a	E _m		E _{m2)} - E _{m1)}		
	m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%	
Reference conditions						,						
1) Before shock									_	_	_	_
is 50 mm above t	Place the EUT on a rigid level surface in its normal position of use and tilted towards one bottom edge until the opposite edge of the EUT is 50 mm above the rigid surface. The angle made by the bottom of the EUT and the test surface shall not exceed 30°. Allow the EUT to drop freely on to the rigid surface. Repeat the test for each bottom edge of the EUT.											
2) After shock											yes	no
Comments:												
a For a comp	lete water	meter th	is is the ma	ximum p	ermissi	ble error	as define	ed in IS	0 406	4-1:2014	IOIML R	49-1:2013,

^a For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.7 $\,$ AC mains voltage dips, short interruptions and voltage variations (ISO 4064-2:2014 | OIML R 49-2:2013, 8.8)

		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meters powered by direct A	C (single-phase) mains power supply
Meter serial No.:	Orientation (V, H, other):

Application conditions	Actual or simulated flow rate	Working pressure	Working tempera- ture	Initial read- ing	Final reading	Indi- cated volume	Actual volume	Meter error	MPEa	Fault	Signifi- cant fault ^b	EU funct ing corre	ion-
	Q()	p_{W}	$T_{ m w}$	$V_i(i)$	$V_i(j)$	$V_{\rm i}$	Va	$E_{\rm m}$		E _{m2)} - E _{m1)}			
	m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
Reference condi-	No voltage	reductions											
tions 1) Before voltage reductions										_	_	_	
2) During voltage	Voltage inte	erruptions	and reduct	ions as i	n ISO 4064	-2:2014	OIML R 4	9-2:2013	, 8.8.				
reduction												yes	no
Comments:													

For a complete water meter this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013$, $4.2.2\ or\ 4.2.3\ according$ to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013, 9.4$).

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.8 Bursts on signal lines (ISO 4064-2:2014|OIML R 49-2:2013, 8.9)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meters	containing	electronics	and prov	ided wit	h I/O and	d communica	ation ports	(including its
externa	al cables)							

Meter serial No.:	Orientation (V, H, other):
ricter seriar non	orientation (v) ii) other ji

The significant fault is equal to half the MPE in the upper flow rate zone.

Application conditions	Actual or simu- lated flow rate	Working pressure	Working tempera- ture	Initial read- ing	Final read- ing	Indi- cated volume	Actual volume	Meter error	MPE ^a	Fault	Signifi- cant fault ^b	EU fur tion co rec	nc- ing r-
	Q()	p_{W}	T_{W}	$V_i(i)$	<i>V_i</i> (j)	V_i	V _a	$E_{ m m}$		E _{m2)} - E _{m1)}			
	m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
Reference condi-													
tions 1) Before burst										_	_	_	=
Each spike shall hav class E2 instrument tion of 50 ns.													
2) After burst												yes	no
Comments:													

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.9 Bursts (transients) on AC and DC mains (ISO 4064-2:2014|OIML R 49-2:2013, 8.10)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meters powered by direct A	C (single-phase) mains power supply
Meter serial No.:	Orientation (V, H, other):

The significant fault is equal to half the MPE in the upper flow rate zone.

Application conditions	Actual or simu- lated flow rate	Work- ing pres- sure	Work- ing tem- pera- ture	Initial reading	Final read- ing	Indi- cated volume	Actual volume	Meter error	MPE ^a	Fault	Signifi- cant fault ^b	EU functi corre	
	$Q_{()}$	p_W	T_W	$V_i(i)$	$V_i(j)$	V_i	V_a	$E_{\rm m}$		E _{m2)} - E _{m1})			
	m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
Refer- ence condi- tions													
1)	With no	significar	nt noise in	mains supply.									
Before burst										_	_	_	_
2) After burst				electromagnetic en plied asynchrono						romagne	tic enviro	onment, E	2 —
												yes	no
Commen	its:												

For a complete water meter this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013$, $4.2.2\ or\ 4.2.3\ according$ to the accuracy class of the meter. If the EUT is a separable part of a water meter, the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013,\ 9.4$).

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.10 Electrostatic discharge (ISO 4064-2:2014|OIML R 49-2:2013, 8.11)

		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

The significant fault is equal to half the MPE in the upper flow rate zone.

	Test ditions	3	Actual or simulated flow rate	Working pres- sure	Working tempera- ture	Initial read- ing	Final read- ing	Indicated volume	Actual volume	Meter error	MPEa	Fault	Signi- ficant fault ^b	fu tio	UT nc- ning or- ctly
			Q()	p_{w}	$T_{ m w}$	$V_i(i)$	$V_i(j)$			E _m		E _{m2)} -			ctry
			m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
Reference co discharges)	nditior	ns (no													
2) Discharge	Mode	,d										_	_	yes	no
pointc															
	С	A A												yes	\vdash
	С	A												yes	+
	С	A												yes	\vdash
Comments:	•										'				
1.2.2 or 4.2 defined by	.3 acco	ording t inufacti	o the accura irer (ISO 40	icy class o 64-2:2014	OIML R 4	r. If the 9-2:201	EUT is 3, 9.4).	a sepa							
4.2.2 or 4.2 defined by The sig	.3 acco the ma mifica e by d	ording t inufactu nt fault rawings	o the accura	icy class of 64-2:2014 alf the MF y.	of the mete POIMLR 4 PE in the up	r. If the 9-2:201 oper flo	EUT is 3, 9.4).	a sepa							
4.2.2 or 4.2 defined by The sig	.3 acco the ma mifica e by d ntact o	ording t inufactu nt fault rawings lischarg	o the accura arer (ISO 400 is equal to h s if necessary	icy class of 64-2:2014 alf the MF y.	of the mete POIMLR 4 PE in the up	r. If the 9-2:201 oper flo	EUT is 3, 9.4).	a sepa							
4.2.2 or 4.2 defined by The sig Indicat C—co Requirem	.3 according the magnificate by dintact contents	ording to nufactu nt fault rawings discharg	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A -	ncy class of 64-2:2014 alf the MF y. — air disc	of the mete POIML R 4 PE in the up	r. If the 9-2:201 oper flo	EUT is 3, 9.4). w rate :	a sepai	rable pa	ert of a v	water r	neter, tl	he MPE	sha	ll b
4.2.2 or 4.2 defined by The sign of the si	.3 according to the main specification of the second secon	ording to inufacturate fault rawings discharges in the given in the bod	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A - If the flo n. If the flo y of the m	ncy class of 64-2:2014 alf the MF y. — air disc w axis i	of the mete FOIML R 4 PE in the up harge (8 kd/s) s vertica	r. If the 9-2:201 opper floov. V).	EUT is 3, 9.4). w rate:	zone.	on (fro	m bot	water r	o top c	or fron	sha n to	pp t
4.2.2 or 4.2 defined by The sign of The si	.3 according the main specific and the second secon	ording to inufacture fault rawings discharges: the given the boding given.	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A - If the flo n. If the flo y of the m	ncy class of 64-2:2014 alf the MF y. — air disc w axis i ow axis eter, the	of the mete POIML R 4 PE in the up harge (8 k s vertica is horize e location	r. If the 9-2:201 oper floov). I, the football as of the	EUT is 3, 9.4). w rate:	a separation irection e met	on (fro er has device	m bot	tom to	o top o	or fron	sha n to	pp t
4.2.2 or 4.2 defined by The sig Indicat C—co Requirem oottom) s Requirem ntegral w neter) sha	.3 according the main specific and the second secon	ording to inufacture fault rawings discharges: the given the boding given.	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A - If the flo n. If the flo y of the m	ncy class of 64-2:2014 alf the MF y. — air disc w axis i ow axis eter, the	of the mete POIML R 4 PE in the up harge (8 k s vertica is horize e location	r. If the 9-2:201 oper floov). I, the football as of the	EUT is 3, 9.4). w rate:	a separation irection e met	on (fro er has device	m bot	tom to	o top o	or fron	sha n to	pp t
A.2.2 or 4.2 defined by The sig Indicat C—co Requirem ottom) s Requirem ntegral w neter) sha	.3 according the mainification of the mainification	ording to anufacture of fault rawings discharges: the given discharges of the bod given.	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A - If the flo n. If the flo y of the m	ncy class of 64-2:2014 alf the MF y. — air disc w axis i ow axis eter, the	of the mete POIML R 4 PE in the up harge (8 k s vertica is horize e location	r. If the 9-2:201 oper floovy). I, the footbal an of the 0064-2	EUT is 3, 9.4). w rate:	irection e met	on (fro er has device	m bota an in a (at th	tom to dicati	o top o	or fron	n to	pp t
4.2.2 or 4.2 defined by The sign of the si	.3 according to the mainification of the mainificat	ording to anufacture of fault rawings discharges: the given discharges of the bod given.	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A - If the flo n. If the flo y of the m	ncy class of 64-2:2014 alf the MF y. — air disc w axis i ow axis eter, the	of the meter of the meter of the meter of the meter of the up that	r. If the 9-2:201 oper flood of the flood of	EUT is 3, 9.4). w rate:	irection e met cating	on (fro er has device	m both an in a (at the	tom to dicati	o top o	or from	n to	pp t
4.2.2 or 4.2 defined by The sig Indicat C — co Requirem Tottom) sig Requirem The sig Requirem The sig	.3 according to the mainification of the mainificat	ording to anufacture of fault rawings discharges: the given discharges of the bod given.	o the accura arer (ISO 400 is equal to h s if necessary ge (6 kV); A - If the flo n. If the flo y of the m	ncy class of 64-2:2014 alf the MF y. — air disc w axis i ow axis eter, the	of the meter of the meter of the meter of the meter of the up that	r. If the 9-2:201 oper flo V). I, the footbal at of the O64-2 An Ambie	EUT is 3, 9.4). w rate a color of the indices and the indices are the indices	irection e met eating	on (fro er has device	m both an in a (at the	tom to dicati	o top o	or from	n to	pp t

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation	ı (V, H, other):
Flow direction (see Pequire	mont 1)	Location of indicating device (see Pequirement 2)

Test conditions	pola tion ca	enna riza- verti- al/ contal	Actual or simu- lated flow rate	Work- ing pres- sure	Work- ing temper- ature	Initial read- ing	Final read- ing	Indi- cated volume	Actual vol- ume	Meter error	MPEa	Fault	Signifi- cant fault ^b	functing of	tion- cor-
				p_{W}	T_{W}	V _i (i)	V _i (f)	$V_{\rm i}$	V _a	$E_{\rm m}$		E _{m2)} - E _{m1)}			
			m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
1) Reference conditions (no disturbance)	V	Н										_	_	_	_
2) Disturbance															
26-40 MHz	V	Н												yes	no
40-60 MHz	V	Н												yes	no
60-80 MHz	V	Н												yes	no
80-100 MHz	V	Н												yes	no
100-120 MHz	V	Н												yes	no
120-144 MHz	V	Н												yes	no
144-150 MHz	V	Н												yes	no
150-160 MHz	V	Н												yes	no
160-180 MHz	V	Н												yes	no
180-200 MHz	V	Н												yes	no
200-250 MHz	V	Н												yes	no
250-350 MHz	V	Н												yes	no
350-400 MHz	V	Н												yes	no
400-435 MHz	V	Н												yes	no
435-500 MHz	V	Н												yes	no
500-600 MHz	V	Н												yes	no
600-700 MHz	V	Н												yes	no
700-800 MHz	V	Н												yes	no
800-934 MHz	V	Н												yes	no
934-1 000 MHz	V	Н												yes	no

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

The significant fault is equal to half the MPE in the upper flow rate zone.

Test conditions	Anteni polariz tion ver cal/ horizon	a- or simu- lated flow	Work- ing pres- sure	Work- ing temper- ature	Initial read- ing	Final read- ing	Indi- cated volume	Actual vol- ume	Meter error	MPEa	Fault	Signifi- cant fault ^b	funct ing c	ion- cor-
			p_{w}	$T_{ m w}$	V _i (i)	$V_{\rm i}({ m f})$	V_{i}	V _a	E_{m}		E _{m2)} - E _{m1)}			
		m³/h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
1 000-1 400 MHz	V	Н											yes	no
1 400-2 000 MHz	V	Н											yes	no

Comments:

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.12 Conducted electromagnetic field (ISO 4064-2:2014|OIML R 49-2:2013, 8.13)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation (V, H, other):
-------------------	----------------------------

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

b The significant fault is equal to half the MPE in the upper flow rate zone.

Test conditions	Actual or simulated flow rate	Working pres- sure	Work- ing temper- ature	Initial reading	Final read- ing	Indi- cated volume	Actual vol- ume	Meter error	MPEa	Fault	Signi- ficant fault ^b	EU funct ing o	tion- cor-
	Q()	p_{W}	T_{W}	$V_{\rm i}({ m i})$	V _i (f)	$V_{\rm i}$	V _a	Em		E _{m2)} - E _{m1)}			
	m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
1) Reference conditions (no disturbance)										_	_	_	_
2) Disturbance													
0,15-0,30 MHz												yes	no
0,30-0,57 MHz												yes	no
0,57-1,1 MHz												yes	no
1,1-2,2 MHz												yes	no
2,2-3,9 MHz												yes	no
3,9-7,5 MHz												yes	no
7,5-14 MHz												yes	no
14-30 MHz												yes	no
30-50 MHz												yes	no
50-80 MHz												yes	no
Comments:	•					,	•	•					

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.13 Surges on signal, data and control lines (ISO 4064-2:2014|OIML R 49-2:2013, 8.14) (applicable only for environmental class E2)

		At start	At end	
Application No:	 Ambient temperature:			°C
Model:	 Ambient relative humidity:			%
Date:	 Ambient atmospheric pressure:			MPa
Observer:	 Time:			

b The significant fault is equal to half the MPE in the upper flow rate zone.

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

meter seriai no.:	Orientation (v, H, other):	
Flow direction (see Requ	rement 1): Location of indicating device (see Requiremen	nt 2):

Test conditions		Actual or simu- lated flow- rate	Working pressure	temp.	Initial reading	Final reading	Indi- cated volume	Actual vol- ume	Meter error	MPE ^a	Fault	Sig- nificant fault ^b	EUT func- tioning correctly		
		Q()	P_{W}	$T_{ m W}$	V _i (i)	<i>V</i> _i (j)	V_{i}	V _a	Em		E _{m2)} -E _{m1)}				
		m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%			
1) Reference	:														
conditions (no surges)															
2) Surge	Мо	dec													
Positive	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Negative	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Positive	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no
Negative	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no

Comments:

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

 $^{^{\}rm a}$ For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of the water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

b The significant fault is equal to half the MPE in the upper flow rate zone.

c L-L — line to line surge; L-E — line to earth surge.

Requirement 2: integral with the bo meter) shall be given	If the flow axis is horizontal and the meter has a dy of the meter, the location of the indicating device (an.			
	C and DC mains power lines (ISO 4064-2:2014 OIM vironmental class E2)	L R 49-2:	2013, 8.	15) (ap-
		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			
Test method:		Gravi	metric/vo	lumetric
Volume measures/we		,		
Water conductivity (e	electromagnetic induction meters only) — S/cm:			
Length of straight pip				
Length of straight pip				
Nominal diameter DN	of pipe before and after meter (or manifold) — mm:			
Describe flow straigh	tener installation if used:			

Meter serial No.:_____ Orientation (V, H, other):_____

Flow direction (see Requirement 1): ___ Location of indicating device (see Requirement 2):___

Test conditions		Actual or simulated flow rate	Working pres- sure	Working temper- ature	Initial reading	Final read- ing	Indi- cated vol- ume	Actual vol- ume	Meter error	MPEa	Fault	Signi- ficant fault ^b	EU funct ing o	tion- cor-	
			Q()	p_{W}	$T_{ m w}$	$V_{\rm i}({ m i})$	V _i (j)	$V_{\rm i}$	V _a	$E_{ m m}$		E _{m2)} - E _{m1)}			
		m ³ /h	MPa (bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%			
1) Reference	condit	ions													
(no surges)												_	_	_	
2) DC power	Мо	dec													
Positive	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Negative	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Positive	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no
Negative	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no

Comments:

Meter serial No.:	Orientation (V. H. other):
Welet Serial No.:	Orientation Ev. n. otheri:

Flow direction (see Requirement 1): ___ Location of indicating device (see Requirement 2):___

Test conditions	Actual or simu- lated flow rate	Working pressure	i tem- i	reading	Final read- ing	Indi- cated volume	Actual vol- ume	Meter error	MPE ^a	Fault	Signi- ficant fault ^b	EUT function ing cor- rectly	.
	Q()	p_{W}	T_{W}	$V_{\rm i}({ m i})$	V _i (j)	$V_{\rm i}$	V _a	Em		E _{m2)} - E _{m1)}			
	m³/h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
1) Reference conditions													
(no surges)										_	_	_ -	\neg

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of the water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of the water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

b The significant fault is equal to half the MPE in the upper flow rate zone.

c L-L — line to line surge; L-E — line to earth surge.

b The significant fault is equal to half the MPE in the upper flow rate zone.

L-L — line to line surge; L-E — line to earth surge.

	Test conditions		Actual or simu- lated flow rate	Working pressure	Working tem- perature	Initial reading	Final read- ing	Indi- cated volume	Actual vol- ume	Meter error	MPEa	Fault	Signi- ficant fault ^b	EU func ing rec	cor-
			Q()	p_{W}	$T_{ m W}$	$V_{\rm i}({ m i})$	V _i (j)	$V_{\rm i}$	V _a	Em		E _{m2)} - E _{m1)}			
			m ³ /h	MPa(bar)	°C	m^3	m ³	m^3	m ³	%	%	%	%		
AC supply voltage	Мо	de ^c													
Positive	L	L													
Positive	L	L												yes	no no
	L	L												yes	\vdash
Negative	L	L												yes yes	no no
Negative	L	L												yes	no
	L	L												yes	no
Positive	L	E												yes	no
1 ositive	L	E												yes	no
	L	E												yes	no
Negative	L	E												yes	no
	L	Е												yes	no
	L	Е												yes	no
AC supply voltage	Мо	de ^c		I					I		<u> </u>	I	l	12	
Positive	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Negative	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Positive	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no
Negative	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no
Comments:															

^a For a complete water meter this is the maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of the water meter, the MPE shall be defined by the manufacturer (ISO 4064-2:2014|OIML R 49-2:2013, 9.4).

Meter serial No.:	Orientation	(V, H, o	other):
-------------------	-------------	----------	---------

b The significant fault is equal to half the MPE in the upper flow rate zone.

c L-L — line to line surge; L-E — line to earth surge.

Flow direction (see Requirement 1): ___ Location of indicating device (see Requirement 2):___

Test conditions			Actual or simu- lated flow rate	Working pressure	Working tempera- ture	Initial read- ing	Final read- ing	Indi- cated vol- ume	Actual vol- ume	Meter error	MPEa	Fault	Sig- nifi- cant fault ^b	fun tion cor rec	nc- ing r-
			Q()	$p_{ m W}$	$T_{ m w}$	$V_{\rm i}({ m i})$	V _i (j)	$V_{\rm i}$	V _a	Em		E _{m2)} - E _{m1)}			
			m³/h	MPa(bar)	°C	m ³	m ³	m ³	m ³	%	%	%	%		
1) Reference con surges	nditions (s)	(no										_	_	_	<u> </u>
AC supply voltage 180°	Mod	ec													
Positive	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Negative	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Positive	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no
Negative	L	Е												yes	no
	L	Е												yes	no
,	L	Е												yes	no
AC supply voltage 270°	Mod	ec													
Positive	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Negative	L	L												yes	no
	L	L												yes	no
	L	L												yes	no
Positive	L	Е												yes	no
	L	Е												yes	no
	L	Е												yes	no
Negative	L	Е												yes	no
,	L	Е												yes	no
	L	Е												yes	no

Comments:

Requirements

For a complete water meter this is the maximum permissible error as defined in ISO $4064-1:2014|OIML\ R\ 49-1:2013, 4.2.2$ or 4.2.3 according to the accuracy class of the meter. If the EUT is a separable part of the water meter, the MPE shall be defined by the manufacturer (ISO $4064-2:2014|OIML\ R\ 49-2:2013, 9.4$).

b The significant fault is equal to half the MPE in the upper flow rate zone.

c L-L — line to line surge; L-E — line to earth surge.

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

4.6.15 Absence of flow test (ISO 4064-2:2014|OIML R 49-2:2013, 8.17)

		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:		<u> </u>	MPa
Observer:	Time:		1	

Test method:	Gravimetric/volumetric
Volume measures/weighbridge used — m ³ or kg:	
Water conductivity (electromagnetic induction meters only) — S/cm:	
Length of straight pipe before meter (or manifold) — mm:	
Length of straight pipe after meter (or manifold) — mm:	
Nominal diameter DN of pipe before and after meter (or manifold) — mm:	
Describe flow straightener installation if used:	

Meter serial No.:	Orientation (V, H, other):

Flow direction (see Requirement 1): ____ Location of indicating device (see Requirement 2):___

Application conditions	Working pressure	Working tem- perature	Initial reading	Final reading after 15 min	Indicated volume	tion	func- ning ectly
	p_{W}	$T_{ m W}$	$V_{\rm i}({ m i})$	$V_{\rm i}({\rm j})$	V_{i}		
	MPa (bar)	°C	m^3	m ³	m^3		
Meter filled with water, purging out all air						yes	no
Water fully discharged from the meter						yes	no
Comments:							

The water meter totalization shall not change by more than the value of the verification scale interval during each test interval.

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

5 Initial verification report

5.1 General

The specific format layout for reporting initial verifications and subsequent verifications of water meters is left largely to the metrological authorities and the individual organizations carrying out verification tests. However, the report (records) shall contain the minimum information detailed in ISO 4064-1:2014|OIML R 49-1:2013, 7.3 and ISO 4064-2:2014|OIML R 49-2:2013, 11.2.2.

130 +00+1.2014 OIML K +7-1.2013, 7.3 and 130 +00+2.2014 OIML K +7-2.2013, 11.2.2.
In addition to this, any special requirements and/or restrictions for initial verification detailed in the type approval certificate for the EUT shall be applied. A record of equipment and instrumentation used with calibration details (see Annex B) shall be kept.
The following basic information should also be included in the verification report (record) followed by the results of the tests (three examples of how the report may be formatted are given below):
5.2 Information concerning the EUT verified
Type approval number of the EUT
Details of the EUT:
Model number:
Accuracy class:
Meter designation/s Q_3 :
Ratio Q_3/Q_1 :
Maximum pressure loss $\Delta p_{ ext{max}}$:
Flow rate at $\Delta p_{ ext{max}}$:
Year of manufacture:
The manufacturer:
Authorized representative:
Address
Testing laboratory:
Authorized representative:
Address

5.3 Initial verification test report (ISO 4064-2:2014|OIML R 49-2:2013, Clause 10)

5.3.1 Example 1: Approved water meter (complete or combined) (ISO 4064-2:2014|OIML R 49-2:2013, 10.1)

		At start	At end			
Application No:	Ambient temperature	e:		°C		
Model:	Ambient relative humidity	y:		%		
Date:	Ambient atmospheric pressure	e:		МРа		
Observer:	Time	e:				
Error (of indication) tests			-		
EUT testing case (IS	O 4064-2:2014 OIML R 49-2:2013, 8.1.8)					
Category for testing number>)	(ISO 4064-2:2014 OIML R 49-2:2013, <clause< td=""><td colspan="5">a</td></clause<>	a				
Test method:		Gravime	ric/volur	netric		
Volume measures/w	eighbridge used — m³ or kg:					
Water conductivity (cm:	electromagnetic induction meters only) — S/					
Length of straight pi	pe before meter (or manifold) — mm					
Length of straight pi	pe after meter (or manifold) — mm					
Nominal diameter D fold) — mm:	N of pipe before and after meter (or mani-					
Describe flow straig	htener installation if used:					
a Enter clause num ISO 4064-2:2014 OIML R	ber according to one of the configuration categorie 49-2:2013, 8.1.8.2 to 8.1.8.5.	es for testing	the EU	Γ listed in		
Meter serial No.:	Orientation (V, H, other):					

Nominal flow ratea	Actual flow rate	Working pressure	Working temperature	Initial reading	Final reading	Indicated volume	Actual volume	Meter error ^b	MPEc
m ³ /h	Q() m ³ /h	MPa (bar)	°C	V _i (i) m ³	V _i (f) m ³	$V_{ m i}$ ${ m m}^3$	$V_{ m a}$ m ³	Е _с %	%
Q_1									
Q_2									
Q_3									

Flow direction (see Requirement 1): ____ Location of indicating device (see Requirement 2):___

Comments:

- These flow rates shall be applied unless alternatives are specified in the type approval certificate.
- b Calculations for the error (of indication) are described in ISO 4064-2:2014|OIML R 49-2:2013, Annex B.
- $^{\text{c}}$ The maximum permissible error as defined in ISO 4064-1:2014|OIML R 49-1:2013, 4.2.2 or 4.2.3, according to the accuracy class of the meter.

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

5.3.2 Example 2: Approved calculator (including indicating device) (ISO 4064-2:2014|OIML R 49-2:2013, 10.2)

		At start	At end	
Application No:	Ambient temperature:			°C
Model:	Ambient relative humidity:			%
Date:	Ambient atmospheric pressure:			MPa
Observer:	Time:			

Error (of indication) tests

EUT testing case (ISO 4064-2:2014 OIML R 49-2:2013, 8.1.8)								
Category for testing (ISO 4064-2:2014 OIML R 49-2:2013, <clause number="">)</clause>			a					
^a Enter clause number according to one of the configuration categor ISO 4064-2:2014 OIML R 49-2:2013, 8.1.8.2 to 8.1.8.5.	ries for	testing	the	EUT	listed	in		

Meter serial No.:	Orientation (V, H, other):

Flow direction (see Requirement 1): ___ Location of indicating device (see Requirement 2):____

Nominal flow ratea	Actual flow rate	Applied pulse fre- quency ^b	Initial reading	Final reading	Total pulses injected ^b	Indicated volume	Actual volume	Meter error ^c	MPEd
	$Q_{()}$		$V_{\rm i}({ m i})$	$V_{\rm i}({ m f})$	T_{p}	$V_{\rm i}$	V _a	E_{C}	
m³/h	m ³ /h	Hz	m ³	m ³		m ³	m ³	%	%
Q_1									
Q_2									
Q_3									

Comments:

- a These flow rates shall be applied unless alternatives are specified in the type approval certificate.
- b Other types of output signal may be appropriate according to the design of the water meter.
- c Calculations for the error (of indication) are described in ISO 4064-2:2014 OIML R 49-2:2013, Annex B.
- d The maximum error (of indication) allowed for the calculator (including indicating device) is given in the type approval certificate.

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

5.3.3 Example 3: Approved measurement transducer (including flow or volume sensor) (ISO $4064-2:2014 \mid OIML \mid R \mid 49-2:2013 \mid 10.2)$

					At start	At end	
Application No:			Ambient te	mperature	:		°C
Model:		1	Ambient relative	e humidity:			%
Date:		Ambi	ent atmospheri	c pressure:			MPa
Observer:				Time			
Error (of indication	ı) tests						
EUT testing case (IS	50 4064-2:202	14 OIML R 49-2	:2013, 8.1.8)				
Category for testing number>)	(ISO 4064-2:	:2014 OIML R 4	9-2:2013, <cla< td=""><td>use</td><td></td><td>a</td><td></td></cla<>	use		a	
Test method:					Gravime	tric/voluı	metric
Volume measures/v	veighbridge u	sed — m³ or ką	<u>ς</u> :				
Water conductivity cm:	(electromagn	netic induction i	neters only) –	- S/			
Length of straight p	ipe before me	eter (or manifol	d) — mm				
Length of straight p	ipe after met	er (or manifold)) — mm				
Nominal diameter D fold) — mm:	N of pipe befo	ore and after m	eter (or mani-				
Describe flow straig	ghtener instal	lation if used:					
a Enter clause nun ISO 4064-2:2014 OIML l			e configuration	categories	for testing	g the EU	Γ listed i
Meter serial No.:					e (see Ren	uiremen	t 2):

Nominal flow ratea	Actual flow rate	Working pressure	Working tempera- ture	Initial reading	Final reading	Total output pulses ^b	Indicated volume	Actual volume	Meter error ^c	MPEd
m ³ /h	Q() m ³ /h	MPa (bar)	°C	V _i (i) m ³	V _i (f) m ³	$T_{ m p}$	V _i m ³	V _a m ³	Е _с %	%
Q_1										
Q_2										
Q_3										

Comments:

- a These flow rates shall be applied unless alternatives are specified in the type approval certificate.
- b Other types of output signal may be appropriate according to the design of the water meter.
- c Calculations for the error (of indication) are described in ISO 4064-2:2014|OIML R 49-2:2013, Annex B.
- $^{
 m d}$ The maximum error (of indication) allowed for the measurement transducer (including flow or volume sensor) is given in the type approval certificate.

Requirements

Requirement 1: If the flow axis is vertical, the flow direction (from bottom to top or from top to bottom) shall be given.

BS EN ISO 4064-3:2014 ISO 4064-3:2014(E)

Requirement 2: If the flow axis is horizontal and the meter has an indicating device which is integral with the body of the meter, the location of the indicating device (at the side or at the top of the meter) shall be given.

Annex A

(normative)

List of documents concerning the type (ISO 4064-1:2014|OIML R 49-1:2013, 7.2.9)

Date	Brief description

Annex B

(normative)

Listing of test equipment used in examinations and tests

Domomotor					Calibration date		Used in test No.		
Parameter measured or applied	Instrument or equipment	Manufacturer	Model number	Serial number	Last	Next	(ISO 4064-2:2014 OIML R 49-2:2013, subclause)		
Comments									
Comments:			,						

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

